Лекция 19. Компьютерное зрение
Многие приложения в области компьютерного зрения тесно связаны с нашей повседневной жизнью сейчас и в будущем, будь то медицинская диагностика, беспилотные автомобили, мониторинг камеры или интеллектуальные фильтры.
В последние годы технология глубокого обучения значительно повысила производительность систем компьютерного зрения. Можно сказать, что самые передовые приложения компьютерного зрения почти неразделимы от глубокого обучения.
Мы представили модели глубокого обучения, обычно используемые в области компьютерного зрения, в главе «Сверточные нейронные сети» и попрактиковались в простых задачах классификации изображений. В этой главе мы познакомимся с методами увеличения и точной настройки изображений и применим их к классификации изображений. Затем мы рассмотрим различные методы обнаружения объектов. После этого мы узнаем, как использовать полностью сверточные сети для семантической сегментации изображений.
Затем мы объясним, как использовать технологию передачи стилей для создания изображений, похожих на обложку этой книги. Наконец, мы выполним практические упражнения с двумя важными наборами данных компьютерного зрения просмотреть содержание этой и предыдущих глав.
13.1.1. Увеличение изображения
Мы упоминали, что крупномасштабные наборы данных являются предпосылкой для успешного применения глубоких нейронных сетей в разделе 7.1. Технология увеличения изображений расширяет масштаб обучающих наборов данных, внося серию случайных изменений в обучающие изображения для получения похожих, но разных обучающих примеров. Другой способ объяснить увеличение изображения состоит в том, что случайное изменение обучающих примеров может уменьшить зависимость модели от определенных свойств, тем самым улучшая ее способность к обобщению. Например, мы можем обрезать изображения по-разному, чтобы интересующие объекты появлялись в разных положениях, уменьшая зависимость модели от положения, в котором появляются объекты. Мы также можем настроить яркость, цвет и другие факторы, чтобы снизить чувствительность модели к цвету. Можно сказать, что технология увеличения изображения внесла большой вклад в успех AlexNet. В этом разделе мы обсудим эту технологию, которая широко используется в компьютерном зрении.
Сначала импортируйте пакеты или модули, необходимые для эксперимента в этом разделе.
%matplotlib inline
from d2l import mxnet as d2l
from mxnet import autograd, gluon, image, init, np, npx
from mxnet.gluon import nn
npx.set_np()

13.1.1.1. Общий метод увеличения изображения
В этом эксперименте мы будем использовать изображение с формой 400 × 500 в качестве примера.
d2l.set_figsize ()
img = image.imread ('../ img / cat1.jpg')
d2l.plt.imshow (img.asnumpy ());

[image:]
Большинство методов увеличения изображения имеют определенную степень случайности. Чтобы упростить наблюдение за эффектом увеличения изображения, мы определим вспомогательную функцию apply. Эта функция несколько раз запускает метод увеличения изображения aug на входном изображении img и показывает все результаты.
def apply(img, aug, num_rows=2, num_cols=4, scale=1.5):
Y = [aug(img) for _ in range(num_rows * num_cols)]
d2l.show_images(Y, num_rows, num_cols, scale=scale)

13.1.1.2. Переворачивание и кадрирование
Перелистывание изображения влево и вправо обычно не меняет категорию объекта. Это один из первых и наиболее широко используемых методов увеличения изображения. Затем мы используем модуль преобразований для создания экземпляра RandomFlipLeftRight, который дает 50% вероятность того, что изображение будет перевернуто влево и вправо.
apply(img, gluon.data.vision.transforms.RandomFlipLeftRight())
[image:][image:][image:] [image:]
Листать вверх и вниз не так часто, как влево и вправо. Однако, по крайней мере, для этого примера изображения переворачивание вверх и вниз не мешает распознаванию. Затем мы создаем экземпляр RandomFlip TopBottom для 50% вероятности перевернуть изображение вверх и вниз.
apply(img, gluon.data.vision.transforms.RandomFlipTopBottom())
[image:][image:][image:][image:][image:]
В примере изображения, который мы использовали, кошка находится посередине изображения, но это может быть не для всех изображений. В разделе 6.5 мы объяснили, что слой объединения может снизить чувствительность сверточного слоя в целевое местоположение. Кроме того, мы можем заставить объекты появляться в разных местах изображения в разных пропорциях, произвольно обрезая изображение. Это также может снизить чувствительность модели к целевой позиции.
В следующем коде мы случайным образом обрезаем область площадью от 10% до 100% от исходной площади, а отношение ширины к высоте области случайным образом выбирается от 0,5 до 2.
Затем ширина и высота области масштабируются до 200 пикселей. Если не указано иное, случайное число между a и b в этом разделе относится к непрерывному значению, полученному путем равномерной выборки в интервале [a, b].
shape_aug = gluon.data.vision.transforms.RandomResizedCrop(
(200, 200), scale=(0.1, 1), ratio=(0.5, 2))
apply(img, shape_aug)

[image:] [image:] [image:] [image:] [image:] [image:]

13.1.1.3. Изменение цвета
Еще один метод увеличения - изменение цвета. Мы можем изменить четыре аспекта цвета изображения: яркость, контраст, насыщенность и оттенок. В приведенном ниже примере мы случайным образом изменяем яркость изображения на значение от 50% (1–0,5) до 150% (1 + 0,5) от исходного изображения.
apply(img, gluon.data.vision.transforms.RandomBrightness(0.5))
[image:] [image:] [image:] [image:] [image:]
Точно так же мы можем случайным образом изменить оттенок изображения.
apply(img, gluon.data.vision.transforms.RandomHue(0.5))
[image:] [image:] [image:] [image:] [image:] [image:]
Мы также можем создать экземпляр RandomColorJitter и установить, как одновременно случайным образом изменять яркость, контраст, насыщенность и оттенок изображения.
color_aug = gluon.data.vision.transforms.RandomColorJitter(brightness=0.5, contrast=0.5, saturation=0.5, hue=0.5) apply(img, color_aug)
[image:] [image:] [image:] [image:] [image:] [image:]
13.1.1.4. Использование нескольких методов увеличения изображения
На практике мы будем накладывать несколько методов увеличения изображения. Мы можем наложить различные методы увеличения изображения, определенные выше, и применить их к каждому изображению с помощью экземпляра Compose.
augs = gluon.data.vision.transforms.Compose([gluon.data.vision.transforms.RandomFlipLeftRight(), color_aug, shape_aug])
apply(img, augs)

[image:] [image:] [image:] [image:] [image:] [image:]

13.1.2. Использование обучающей модели увеличения изображения
Далее мы рассмотрим, как применять увеличение изображения в реальных тренировках. Здесь мы используем набор данных CIFAR 10 вместо набора данных Fashion-MNIST, который мы использовали. Это связано с тем, что положение и размер объектов в наборе данных Fashion-MNIST были нормализованы, а различия в цвете и размере объектов в наборе данных CIFAR-10 более значительны. Первые 32 обучающих образа в наборе данных CIFAR-10 показаны ниже.
d2l.show_images(gluon.data.vision.CIFAR10(
train=True)[0:32][0], 4, 8, scale=0.8);

[image:] [image:] [image:] [image:] [image:] [image:]
[image:] [image:] [image:] [image:] [image:] [image:]
[image:] [image:] [image:] [image:] [image:] [image:]

Чтобы получить окончательные результаты во время прогнозирования, мы обычно применяем увеличение изображения только к обучающему примеру и не используем увеличение изображения со случайными операциями во время прогнозирования. Здесь мы используем только простейший метод случайного переворота влево-вправо. Кроме того, мы используем экземпляр ToTensor для преобразования изображений мини-пакета в формат, требуемый MXNet, то есть 32-битные числа с плавающей запятой с формой (размер пакета, количество каналов, высота, ширина) и диапазоном значений от 0 до 1.
train_augs = gluon.data.vision.transforms.Compose([
gluon.data.vision.transforms.RandomFlipLeftRight(),
gluon.data.vision.transforms.ToTensor()])
test_augs = gluon.data.vision.transforms.Compose([
gluon.data.vision.transforms.ToTensor()])

Затем мы определяем вспомогательную функцию, чтобы упростить чтение изображения и применить увеличение изображения. Функция transform_first, предоставляемая набором данных Gluon, применяет увеличение изображения к первому элементу каждого обучающего примера (изображению и метке), то есть к элементу в верхней части изображения. Подробное описание DataLoader см. В разделе 3.5.
def load_cifar10(is_train, augs, batch_size):
return gluon.data.DataLoader(
gluon.data.vision.CIFAR10(train=is_train).transform_first(augs),
batch_size=batch_size, shuffle=is_train,
num_workers=d2l.get_dataloader_workers())

13.1.2.1. Использование модели обучения с несколькими графическими процессорами
Мы обучаем модель ResNet-18, описанную в разделе 7.6, на наборе данных CIFAR-10. Мы также подадим методы, описанные в разделе 12.6, и используют модель обучения с несколькими графическими процессорами.
Затем мы определяем функцию обучения для обучения и оценки модели с использованием нескольких графических процессоров.
#@save
def train_batch_ch13(net, features, labels, loss, trainer, devices,
split_f=d2l.split_batch):
X_shards, y_shards = split_f(features, labels, devices)
with autograd.record():
pred_shards = [net(X_shard) for X_shard in X_shards]
ls = [loss(pred_shard, y_shard) for pred_shard, y_shard
in zip(pred_shards, y_shards)]
for l in ls:
l.backward()
The True flag allows parameters with stale gradients, which is useful
later (e.g., in fine-tuning BERT)
trainer.step(labels.shape[0], ignore_stale_grad=True)
train_loss_sum = sum([float(l.sum()) for l in ls])
train_acc_sum = sum(d2l.accuracy(pred_shard, y_shard)
for pred_shard, y_shard in zip(pred_shards, y_shards))
return train_loss_sum, train_acc_sum
#@save
def train_ch13(net, train_iter, test_iter, loss, trainer, num_epochs,
devices=d2l.try_all_gpus(), split_f=d2l.split_batch):
num_batches, timer = len(train_iter), d2l.Timer()
animator = d2l.Animator(xlabel='epoch', xlim=[0, num_epochs], ylim=[0, 1],
legend=['train loss', 'train acc', 'test acc'])
for epoch in range(num_epochs):
Store training_loss, training_accuracy, num_examples, num_features
metric = d2l.Accumulator(4)
for i, (features, labels) in enumerate(train_iter):
timer.start()
l, acc = train_batch_ch13(
net, features, labels, loss, trainer, devices, split_f)
metric.add(l, acc, labels.shape[0], labels.size)
timer.stop()
if (i + 1) % (num_batches // 5) == 0:
animator.add(epoch + i / num_batches,
(metric[0] / metric[2], metric[1] / metric[3],
None))
test_acc = d2l.evaluate_accuracy_gpus(net, test_iter, split_f)
animator.add(epoch + 1, (None, None, test_acc))
print(f'loss {metric[0] / metric[2]:.3f}, train acc '
f'{metric[1] / metric[3]:.3f}, test acc {test_acc:.3f}')
print(f'{metric[2] * num_epochs / timer.sum():.1f} examples/sec on '
f'{str(devices)}')

Теперь мы можем определить функцию train_with_data_aug, чтобы использовать увеличение изображения для обучения модели. Эта функция получает все доступные графические процессоры и использует Адама в качестве алгоритма оптимизации для обучения. Затем он применяет увеличение изображения к набору обучающих данных и, наконец, вызывает только что определенную функцию поезда для обучения и оценки модели.
batch_size, devices, net = 256, d2l.try_all_gpus(), d2l.resnet18(10)
net.initialize(init=init.Xavier(), ctx=devices)
def train_with_data_aug(train_augs, test_augs, net, lr=0.001):
train_iter = load_cifar10(True, train_augs, batch_size)
test_iter = load_cifar10(False, test_augs, batch_size)
loss = gluon.loss.SoftmaxCrossEntropyLoss()
trainer = gluon.Trainer(net.collect_params(), 'adam',
{'learning_rate': lr})
train_ch13(net, train_iter, test_iter, loss, trainer, 10, devices)

Теперь мы обучаем модель, используя увеличение изображения путем случайного переворачивания влево и вправо.
train_with_data_aug (train_augs, test_augs, net)
потеря 0,166, поезд по 0,943, тест по 0,856
3897,5 примеров / сек на [gpu (0), gpu (1)]

Резюме
• Увеличение изображения генерирует случайные изображения на основе существующих данных обучения, чтобы справиться с переобучением.
• Чтобы получить окончательные результаты во время прогнозирования, мы обычно применяем увеличение изображения только к обучающему примеру и не используем увеличение изображения со случайными операциями во время прогнозирования.
• Мы можем получить классы, связанные с увеличением изображения из модуля преобразований Глюона.
Упражнения
1. Обучите модель без использования увеличения изображения: train_with_data_aug (no_aug, no_aug). Сравните точность обучения и тестирования при использовании и без увеличения изображения. Может ли этот сравнительный эксперимент подтвердить аргумент, что увеличение изображения может уменьшить переобучение? Почему?
2. Добавьте различные методы увеличения изображения в обучение модели на основе набора данных CIFAR-10. Наблюдайте за результатами внедрения.
3. Что касается документации MXNet, какие еще методы увеличения изображения предусмотрены в модуле преобразований Gluon?
Обсуждения1)
1) https://discuss.d2l.ai/t/367

13.2. Тонкая настройка
В предыдущих главах мы обсуждали, как обучать модели на наборе обучающих данных Fashion-MNIST, который содержит всего 60 000 изображений. Мы также описали ImageNet, наиболее широко используемый в академическом мире крупномасштабный набор данных изображений, содержащий более 10 миллионов изображений и объектов более 1000 категорий. Однако размер наборов данных, с которыми мы часто имеем дело, обычно больше первого, но меньше второго.
Предположим, мы хотим идентифицировать разные виды стульев на изображениях, а затем отправлять пользователю ссылку на покупку. Один из возможных методов - сначала найти сотню общих стульев, сделать тысячу разных изображений с разными углами для каждого стула, а затем обучить модель классификации на собранном наборе данных изображений. Хотя этот набор данных может быть больше, чем Fashion-MNIST, количество примеров все же меньше одной десятой от ImageNet. Это может привести к переобучению сложной модели, применимой к ImageNet для этого набора данных. В то же время из-за ограниченного объема данных точность окончательной обученной модели может не соответствовать практическим требованиям.
Чтобы справиться с вышеуказанными проблемами, очевидным решением является сбор дополнительных данных. Однако сбор и маркировка данных может потребовать много времени и денег. Например, чтобы собрать наборы данных ImageNet, исследователи потратили миллионы долларов на финансирование исследований. Хотя в последнее время затраты на сбор данных значительно снизились, их по-прежнему нельзя игнорировать.
Другое решение - применить переносное обучение для переноса знаний, полученных из исходного набора данных, в целевой набор данных. Например, хотя изображения в ImageNet в основном не связаны
Что касается стульев, модели, обученные на этом наборе данных, могут извлекать более общие функции изображения, которые могут помочь идентифицировать края, текстуры, формы и композицию объекта. Эти похожие особенности могут быть одинаково эффективны для распознавания стула.
В этом разделе мы познакомим вас с общей техникой трансферного обучения: тонкой настройкой. Как показано на рис. 13.2.1, точная настройка состоит из следующих четырех шагов:
1. Предварительно обучите модель нейронной сети, то есть исходную модель, на исходном наборе данных (например, наборе данных Ima geNet).
2. Создайте новую модель нейронной сети, то есть целевую модель. Это реплицирует все проекты моделей и их параметры в исходной модели, за исключением выходного слоя. Мы предполагаем, что эти параметры модели содержат знания, полученные из исходного набора данных, и эти знания будут в равной степени применимы к целевому набору данных. Мы также предполагаем, что выходной слой исходной модели тесно связан с метками исходного набора данных и поэтому не используется в целевой модели.
3. Добавьте выходной слой, выходной размер которого представляет собой количество категорий целевого набора данных, в целевую модель и случайным образом инициализируйте параметры модели этого слоя.
4. Обучите целевую модель на целевом наборе данных, таком как набор данных кресла. Мы будем обучать выходной слой с нуля, при этом параметры всех остальных слоев настраиваются на основе параметров исходной модели.

Рис 13.2.1: Точная настройка.
13.2.1. Распознавание хот-догов
Далее мы будем использовать конкретный пример для практики: распознавание хот-догов. Мы настроим модель ResNet, обученную на наборе данных ImageNet, на основе небольшого набора данных. Этот небольшой набор данных содержит тысячи изображений, некоторые из которых содержат хот-доги. Мы будем использовать модель, полученную в результате точной настройки, чтобы определить, содержит ли изображение хот-дог.
Сначала импортируйте пакеты и модули, необходимые для эксперимента. Пакет model_zoo от Gluon предоставляет общую предварительно обученную модель. Если вы хотите получить больше предварительно обученных моделей для компьютерного зрения, вы можете использовать GluonCV Toolkit187.
%matplotlib inline
from d2l import mxnet as d2l
from mxnet import gluon, init, np, npx
from mxnet.gluon import nn
import os
npx.set_np()

13.2.1.1. Получение набора данных
Набор данных хот-догов, который мы используем, был взят из онлайн-изображений и содержит 1400 позитивных изображений с зараженными хот-догами и такое же количество негативных изображений, содержащих другие продукты. 1 000 изображений различных классов используются для обучения, а остальные используются для тестирования.
Сначала мы загружаем сжатый набор данных и получаем две папки hotdog / train и hotdog / test.
Обе папки имеют подпапки категорий хот-дог и не-хот-дог, каждая из которых имеет соответствующие файлы изображений.
187 https://gluon-cv.mxnet.io
#@save
d2l.DATA_HUB['hotdog'] = (d2l.DATA_URL+'hotdog.zip',
'fba480ffa8aa7e0febbb511d181409f899b9baa5')
data_dir = d2l.download_extract('hotdog')
Downloading ../data/hotdog.zip from http://d2l-data.s3-accelerate.amazonaws.com/hotdog.zip...

Мы создаем два экземпляра ImageFolderDataset для чтения всех файлов изображений в наборе данных обучения и наборе данных тестирования соответственно.
train_imgs = gluon.data.vision.ImageFolderDataset(
os.path.join(data_dir, 'train'))
test_imgs = gluon.data.vision.ImageFolderDataset(
os.path.join(data_dir, 'test'))

Первые 8 положительных примеров и последние 8 отрицательных изображений показаны ниже. Как видите, изображения различаются по размеру и соотношению сторон.
hotdogs = [train_imgs[i][0] for i in range(8)]
not_hotdogs = [train_imgs[-i - 1][0] for i in range(8)]
d2l.show_images(hotdogs + not_hotdogs, 2, 8, scale=1.4);

[image:]
Во время обучения мы сначала обрезаем случайную область со случайным размером и случайным соотношением сторон изображения, а затем масштабируем область до входных данных с высотой и шириной 224 пикселя. Во время тестирования мы масштабируем высоту и ширину изображений до 256 пикселей, а затем обрезаем центральную область с высотой и шириной 224 пикселей для использования в качестве входных данных. Кроме того, мы нормализуем значения трех цветовых каналов RGB (красный, зеленый и синий). Среднее значение всех значений канала вычитается из каждого значения, а затем результат делится на стандартное отклонение всех значений канала для получения выходных данных.
We specify the mean and variance of the three RGB channels to normalize the
image channel
normalize = gluon.data.vision.transforms.Normalize(
[0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
train_augs = gluon.data.vision.transforms.Compose([
gluon.data.vision.transforms.RandomResizedCrop(224),
gluon.data.vision.transforms.RandomFlipLeftRight(),
gluon.data.vision.transforms.ToTensor(),
normalize])
test_augs = gluon.data.vision.transforms.Compose([
gluon.data.vision.transforms.Resize(256),
gluon.data.vision.transforms.CenterCrop(224),
gluon.data.vision.transforms.ToTensor(),
normalize])

13.2.1.2. Определение и инициализация модели
В качестве исходной модели мы используем ResNet-18, который был предварительно обучен на наборе данных ImageNet. Здесь мы указываем pretrained = True, чтобы автоматически загружать и загружать предварительно обученные параметры модели.
При первом использовании параметры модели необходимо загрузить из Интернета
pretrained_net = gluon.model_zoo.vision.resnet18_v2 (pretrained = True)
Экземпляр предварительно обученной исходной модели содержит две переменные-члены: функции и выходные данные.
Первый содержит все слои модели, кроме выходного слоя, а второй является выходным слоем модели. Основная цель этого разделения - облегчить точную настройку параметров модели всех слоев, кроме выходного слоя. Выходные данные переменной-члена исходной модели приведены ниже. Как полностью связанный уровень, он преобразует итоговые выходные данные уровня объединения глобального среднего значения ResNet в выходные данные 1000 классов в наборе данных ImageNet.
pretrained_net.output
Dense(512 -> 1000, linear)

Затем мы создаем новую нейронную сеть для использования в качестве целевой модели. Он определяется так же, как и предварительно обученная исходная модель, но конечное количество выходных данных равно количеству категорий в целевом наборе данных. В приведенном ниже коде параметры модели в функциях переменных-членов экземпляра целевой модели finetune_net инициализируются параметрами модели соответствующего уровня исходной модели. Поскольку параметры модели в функциях получены путем предварительного обучения на наборе данных ImageNet, этого достаточно. Следовательно, для «точной настройки» этих параметров нам обычно достаточно использовать небольшую скорость обучения. Напротив, параметры модели в выходных данных переменной-члена инициализируются случайным образом и обычно требуют большей скорости обучения для обучения с нуля.
Предположим, что скорость обучения в экземпляре Trainer равна η, и используйте скорость обучения 10η для обновления параметров модели в выходных данных переменной-члена.
finetune_net = gluon.model_zoo.vision.resnet18_v2(classes=2)
finetune_net.features = pretrained_net.features
finetune_net.output.initialize(init.Xavier())
The model parameters in output will be updated using a learning rate ten
times greater
finetune_net.output.collect_params().setattr('lr_mult', 10)

13.2.1.3. Тонкая настройка модели
Сначала мы определяем обучающую функцию train_fine_tuning, которая использует точную настройку, чтобы ее можно было вызывать несколько раз.
def train_fine_tuning(net, learning_rate, batch_size=128, num_epochs=5):
train_iter = gluon.data.DataLoader(
train_imgs.transform_first(train_augs), batch_size, shuffle=True)
test_iter = gluon.data.DataLoader(
test_imgs.transform_first(test_augs), batch_size)
devices = d2l.try_all_gpus()
net.collect_params().reset_ctx(devices)
net.hybridize()
loss = gluon.loss.SoftmaxCrossEntropyLoss()
trainer = gluon.Trainer(net.collect_params(), 'sgd', {
'learning_rate': learning_rate, 'wd': 0.001})
d2l.train_ch13(net, train_iter, test_iter, loss, trainer, num_epochs,
devices)

Мы устанавливаем скорость обучения в экземпляре Trainer на меньшее значение, например, 0,01, чтобы точно настроить параметры модели, полученные при предварительном обучении. Основываясь на предыдущих настройках, мы будем обучать параметры выходного слоя целевой модели с нуля, используя скорость обучения в десять раз большую.
train_fine_tuning(finetune_net, 0.01)
loss 0.230, train acc 0.931, test acc 0.920
352.8 examples/sec on [gpu(0), gpu(1)]

Для сравнения мы определяем идентичную модель, но инициализируем все ее параметры модели случайными значениями. Поскольку всю модель нужно обучать с нуля, мы можем использовать более высокую скорость обучения.
scratch_net.initialize(init=init.Xavier())
train_fine_tuning(scratch_net, 0.1)
loss 0.350, train acc 0.842, test acc 0.841
352.7 examples/sec on [gpu(0), gpu(1)]

Как видите, точная модель имеет тенденцию к достижению более высокой точности в ту же эпоху, потому что начальные значения параметров лучше.

Резюме
· Перенос обучения переносит знания, полученные из исходного набора данных, в целевой набор данных. Точная настройка - распространенный метод трансферного обучения.
· Целевая модель копирует все конструкции моделей и их параметры в исходной модели, за исключением выходного слоя, и настраивает эти параметры на основе целевого набора данных. Напротив, выходной слой целевой модели необходимо обучать с нуля.
· Как правило, параметры точной настройки используют меньшую скорость обучения, в то время как при обучении выходного слоя с нуля может использоваться более высокая скорость обучения.

Упражнения
1. Продолжайте увеличивать скорость обучения finetune_net. Как меняется точность модели?
2. Далее настройте гиперпараметры finetune_net и scratch_net в сравнительном эксперименте. У них все еще другая точность?
3. Задайте для параметров в finetune_net.features параметры исходной модели и не обновляйте их во время обучения. Что случится? Вы можете использовать следующий код.

finetune_net.features.collect_params (). setattr ('grad_req', 'ноль')

4. Фактически, в наборе данных ImageNet также есть класс «хот-дог». Соответствующий ему весовой параметр на выходном слое можно получить с помощью следующего кода. Как мы можем использовать этот параметр?
вес = pretrained_net.output.weight
hotdog_w = ​​np.split (weight.data (), 1000, axis = 0) [713]
hotdog_w.shape
(1, 512)

13.3. Обнаружение объектов и ограничивающие рамки
В предыдущем разделе мы представили множество моделей классификации изображений. В задачах классификации изображений мы предполагаем, что есть только одна основная цель на изображении, и мы сосредотачиваемся только на том, как определить целевую категорию. Однако во многих ситуациях на изображении, которое нас интересует, есть несколько целей. Мы не только хотим классифицировать их, но также хотим получить их конкретные позиции на изображении. В компьютерном зрении мы называем такие задачи, как обнаружение объекта (или распознавание объекта).
Обнаружение объектов широко используется во многих областях. Например, в технологии беспилотного вождения нам необходимо планировать маршруты, определяя местоположение транспортных средств, пешеходов, дорог и препятствий на захваченном видеоизображении. Роботы часто выполняют задачи этого типа для обнаружения интересующих целей. Системы в области безопасности должны обнаруживать необычные цели, такие как злоумышленники или бомбы.
В следующих нескольких разделах мы представим несколько моделей глубокого обучения, используемых для обнаружения объектов. Перед этим следует обсудить концепцию локации цели. Сначала импортируйте пакеты и модули, необходимые для эксперимента.
%matplotlib inline
from d2l import mxnet as d2l
from mxnet import image, npx
npx.set_np()

Затем мы загрузим образцы изображений, которые будут использоваться в этом разделе. Мы видим, что в левой части изображения есть собака, а справа - кошка. Это две основные цели на этом изображении.
d2l.set_figsize()
img = image.imread('../img/catdog.jpg').asnumpy()
d2l.plt.imshow(img);
188 https://discuss.d2l.ai/t/368

[image:]
13.3.1. Ограничивающая рамка
При обнаружении объектов мы обычно используем ограничивающую рамку для описания целевого местоположения. Ограничивающая рамка представляет собой прямоугольную рамку, которая может определяться координатами осей x и y в верхнем левом углу и координатами осей x и y в правом нижнем углу прямоугольника. Мы определим ограничивающие рамки собаки и кошки на изображении на основе координатной информации на изображении выше. Началом координат на изображении выше является верхний левый угол изображения, а вправо и вниз - положительные направления оси x и оси y, соответственно.
bbox is the abbreviation for bounding box
dog_bbox, cat_bbox = [60, 45, 378, 516], [400, 112, 655, 493]

Мы можем нарисовать ограничивающую рамку на изображении, чтобы проверить, правильна ли она. Перед рисованием коробки мы определим вспомогательную функцию bbox_to_rect. Он представляет собой ограничивающую рамку в формате ограничивающей рамки matplotlib.
#@save
def bbox_to_rect(bbox, color):
"""Convert bounding box to matplotlib format."""
Convert the bounding box (top-left x, top-left y, bottom-right x,
bottom-right y) format to matplotlib format: ((upper-left x,
upper-left y), width, height)
return d2l.plt.Rectangle(
xy=(bbox[0], bbox[1]), width=bbox[2]-bbox[0], height=bbox[3]-bbox[1],
fill=False, edgecolor=color, linewidth=2)

После загрузки ограничивающей рамки на изображение мы видим, что основной контур цели в основном находится внутри рамки.
fig = d2l.plt.imshow(img)
fig.axes.add_patch(bbox_to_rect(dog_bbox, 'blue'))
fig.axes.add_patch(bbox_to_rect(cat_bbox, 'red'));

[image:]
Резюме
· При обнаружении объектов нам необходимо не только идентифицировать все интересующие объекты на изображении, но и их положение. Позиции обычно представлены прямоугольной ограничительной рамкой.

Упражнения
1) Найдите несколько изображений и попробуйте пометить ограничивающую рамку, содержащую цель. Сравните разницу между временем, которое требуется, чтобы пометить ограничивающую рамку и пометить категорию.

13.4. Якорные коробки
Алгоритмы обнаружения объектов обычно производят выборку большого количества областей на входном изображении, определяют, содержат ли эти области интересующие объекты, и корректируют границы областей, чтобы более точно предсказать ограничивающий прямоугольник цели. В разных моделях могут использоваться разные методы выборки по регионам. Здесь мы представляем один из таких методов: он генерирует несколько ограничивающих рамок с разными размерами и соотношением сторон, центрируясь на каждом пикселе. Эти ограничивающие прямоугольники называются якорными прямоугольниками. В следующих разделах мы попрактикуемся в обнаружении объектов на основе якорных ящиков.
Сначала импортируйте пакеты или модули, необходимые для этого раздела. Здесь мы изменили точность печати NumPy. Поскольку печать тензоров фактически вызывает функцию печати NumPy, числа с плавающей запятой в тензорах, напечатанные в этом разделе, более краткие.
%matplotlib inline
from d2l import mxnet as d2l
from mxnet import gluon, image, np, npx
np.set_printoptions(2)
npx.set_np()

189 https://discuss.d2l.ai/t/369

13.4.1. Создание нескольких якорных ящиков
Предположим, что входное изображение имеет высоту h и ширину w. Мы создаем якорные блоки разной формы с центром в каждом пикселе изображения. Предположим, что размер s ∈ (0, 1], соотношение сторон r> 0, а ширина и высота якорного бокса равны ws√r и hs / √r соответственно. Когда задано центральное положение, определяется якорь с известной шириной и высотой.
Ниже мы устанавливаем набор размеров s1 ,. . . , sn и набор соотношений сторон r1 ,. . . , пог. Если мы используем комбинацию всех размеров и соотношений сторон с каждым пикселем в качестве центра, входное изображение будет иметь в общей сложности якорные блоки whnm. Хотя эти якорные рамки могут охватывать все наземные ограничивающие рамки, вычислительная сложность часто бывает чрезмерной. Поэтому нас обычно интересует только комбинация, содержащая размеры s1 или r1 и соотношения сторон, то есть:
(s1, r1), (s1, r2) ,. . . , (s1, rm), (s2, r1), (s3, r1) ,. . . , (sn, r1). (13.4.1)
То есть количество якорных ящиков с центром в одном пикселе равно n + m - 1. Для всего входного изображения мы сгенерируем в общей сложности wh (n + m - 1) якорных ящиков.
Вышеупомянутый метод генерации якорных ящиков реализован в функции multibox_prior. Мы указываем ввод, набор размеров и набор соотношений сторон, и эта функция вернет все якорные боксы.
img = image.imread('../img/catdog.jpg').asnumpy()
h, w = img.shape[0:2]
print(h, w)
X = np.random.uniform(size=(1, 3, h, w)) # Construct input data
Y = npx.multibox_prior(X, sizes=[0.75, 0.5, 0.25], ratios=[1, 2, 0.5])
Y.shape
561 728
(1, 2042040, 4)

Мы видим, что форма возвращаемой переменной y якорного бокса (размер партии, количество якорных боксов, 4). После изменения формы переменной y блока привязки на (высота изображения, ширина изображения, количество блоков привязки, центрированных в одном пикселе, 4), мы можем получить все блоки привязки, центрированные в указанной позиции пикселя. В следующем примере мы получаем доступ к первому блоку привязки с центром в (250, 250). Он состоит из четырех элементов: координат осей x, y в верхнем левом углу и координаты осей x, y в правом нижнем углу поля привязки. Значения координат по осям x и y делятся на ширину и высоту изображения соответственно, поэтому диапазон значений находится между 0 и 1.
boxes = Y.reshape(h, w, 5, 4)
boxes[250, 250, 0, :]
array([0.06, 0.07, 0.63, 0.82])

Чтобы описать все якорные блоки с центром в одном пикселе изображения, мы сначала определяем функцию show_bboxes для рисования нескольких ограничивающих рамок на изображении.
#@save
def show_bboxes(axes, bboxes, labels=None, colors=None):
"""Show bounding boxes."""
def _make_list(obj, default_values=None):
if obj is None:
obj = default_values
elif not isinstance(obj, (list, tuple)):
obj = [obj]
return obj
labels = _make_list(labels)
colors = _make_list(colors, ['b', 'g', 'r', 'm', 'c'])
for i, bbox in enumerate(bboxes):
color = colors[i % len(colors)]
rect = d2l.bbox_to_rect(bbox.asnumpy(), color)
axes.add_patch(rect)
if labels and len(labels) > i:
text_color = 'k' if color == 'w' else 'w'
axes.text(rect.xy[0], rect.xy[1], labels[i],
va='center', ha='center', fontsize=9, color=text_color,
bbox=dict(facecolor=color, lw=0))

Как мы только что видели, значения координат осей x и y в полях переменных были разделены на ширину и высоту изображения соответственно. При отрисовке изображений нам нужно восстановить исходные значения координат якорных боксов и, следовательно, определить переменную bbox_scale.
Теперь мы можем нарисовать все якорные блоки с центром на (250, 250) на изображении. Как видите, синий блок привязки размером 0,75 и соотношением сторон 1 хорошо покрывает собаку на изображении.
d2l.set_figsize ()
bbox_scale = np.array ((ш, в, ш, в))
fig = d2l.plt.imshow (img)
show_bboxes (fig.axes, box [250, 250,:,:] * bbox_scale,
['s = 0,75, r = 1', 's = 0,5, r = 1', 's = 0,25, r = 1', 's = 0,75, r = 2',
's = 0,75, r = 0,5'])

[image:]

13.4.2. Пересечение через Союз
Мы только что упомянули, что ящик с якорем хорошо закрывает собаку на изображении. Если граничная рамка цели известна, как можно здесь количественно определить «хорошо»? Интуитивно понятный метод состоит в том, чтобы измерить сходство между якорными блоками и ограничивающим блоком наземной истины. Мы знаем, что индекс Жаккара может измерять сходство между двумя наборами. Для наборов A и B их индекс Жаккара - это размер их пересечения, деленный на размер их объединения:
J (A, B) = | A ∩ B |
| A ∪ B |. (13.4.2)

Фактически, мы можем рассматривать пиксельную область ограничивающего прямоугольника как набор пикселей. Таким образом, мы можем измерить сходство двух ограничивающих рамок по индексу Жаккара их наборов пикселей.
Когда мы измеряем подобие двух ограничивающих прямоугольников, мы обычно называем индекс Жаккара пересечением по объединению (IoU), который представляет собой отношение площади пересечения к площади объединения двух ограничивающих прямоугольников, как показано на рис. 13.4.1. Диапазон значений IoU составляет от 0 до 1: 0 означает, что между двумя ограничивающими прямоугольниками нет перекрывающихся пикселей, а 1 означает, что два ограничивающих прямоугольника равны.
Рис 13.4.1: IoU - это отношение площади пересечения к площади объединения двух ограничивающих прямоугольников.
В оставшейся части этого раздела мы будем использовать IoU для измерения сходства между якорными блоками и ограничивающими прямоугольниками, а также между разными якорными блоками.
13.4.3. Маркировка якорных ящиков обучающего набора
В обучающем наборе мы рассматриваем каждый блок привязки как обучающий пример. Чтобы обучить модель обнаружения объектов, нам нужно отметить два типа меток для каждого блока привязки: во-первых, категорию цели, содержащуюся в блоке привязки (категория), и, во-вторых, смещение ограничивающего прямоугольника наземной истины. относительно якорного бокса (смещение). При обнаружении объекта мы сначала генерируем несколько якорных боксов, прогнозируем категории и смещения для каждого якорного бокса, настраиваем положение якорного бокса в соответствии с предсказанным смещением, чтобы получить ограничивающие прямоугольники, которые будут использоваться для прогнозирования, и, наконец, отфильтровываем ограничивающие прямоугольники прогнозирования, что нужно вывести.
Мы знаем, что в обучающем наборе по обнаружению объектов каждое изображение помечено местоположением ограничивающего прямоугольника и категорией содержащейся цели. После того, как якорные блоки сгенерированы, мы в первую очередь маркируем якорные боксы на основе информации о расположении и категории ограничивающих прямоугольников, аналогичных якорным блокам. Так как же нам назначить ограничивающие рамки наземной истины подобным им якорным блокам?
Предположим, что якоря на изображении - это A1, A2 ,. . . , Аna и ограничивающие прямоугольники наземной истинности - это B1, B2 ,. . . , Bnb и na ≥ nb. Определите матрицу X ∈ Rna × nb, где элемент xij в i-й строке и j-м столбце - это IoU якорного блока Ai к ограничивающему прямоугольнику истинности Bj. Сначала мы находим самый большой элемент в матрице X и записываем индекс строки и индекс столбца элемента как i1, j1. Мы назначаем ограничивающую рамку наземной истинности Bj1 якорной рамке Ai1. Очевидно, что блок привязки Ai1 и ограничивающий прямоугольник наземной истинности Bj1 имеют наибольшее сходство среди всех пар «блок привязки - ограничивающий прямоугольник наземной истины». Затем отбросьте все элементы в i1-й строке и j1-й столбец в матрице X. Найдите наибольший оставшийся элемент в матрице X и запишите индекс строки и индекс столбца элемента как i2, j2. Мы назначаем ограничивающий прямоугольник Bj2 наземной истинности якорному блоку Ai2, а затем отбрасываем все элементы в i2-й строке и j2-м столбце в матрице X.
На этом этапе элементы в двух строках и двух столбцах в матрице X были отброшены.
Мы продолжаем до тех пор, пока все элементы в столбце nb в матрице X не будут отброшены. В настоящее время мы назначили ограничивающую рамку достоверной информации каждому из nb якорей. Далее мы проходим только оставшихся якорных ящиков na - nb. Для данного якорного прямоугольника Ai найдите ограничивающий прямоугольник Bj с наибольшим IoU с Ai в соответствии с i-ой строкой матрицы X, и назначить только ограничивающую рамку наземной истинности Bj к блоку привязки Ai, когда IoU больше заданного порога.
Как показано на рис. 13.4.2 (слева), предполагая, что максимальное значение в матрице X равно x23, мы назначим ограничивающий прямоугольник B3 наземной истинности блоку привязки A2. Затем мы отбрасываем все элементы в строке 2 и столбце 3 матрицы, находим самый большой элемент x71 оставшейся заштрихованной области и назначаем граничную рамку наземной истинности B1 блоку привязки A7. Затем, как показано в: numref: fig_anchor_label (в центре), отбросьте все элементы в строке 7 и столбце 1 матрицы, найдите самый большой элемент x54 оставшейся заштрихованной области и назначьте ограничивающую рамку B4 наземной истинности блоку привязки A5. Наконец, как показано в: numref: fig_anchor_label (справа), отбросьте все элементы в строке 5 и столбце 4 матрицы, найдите самый большой элемент x92 в оставшейся заштрихованной области и назначьте ограничивающую рамку B2 для точки привязки A9. После этого нам нужно только пройти по оставшимся якорным блокам A1, A3, A4, A6, A8 и определить, следует ли назначать наземные ограничивающие прямоугольники оставшимся якорным блокам в соответствии с пороговым значением.
Рис 13.4.2: Назначьте прямоугольники привязки наземных границ.
Теперь мы можем пометить категории и смещения якорных боксов. Если блоку привязки A назначен ограничивающий прямоугольник B на основе наземной истины, категория блока привязки A устанавливается в категорию B. И смещение блока привязки A устанавливается в соответствии с относительным положением центральных координат B и A и относительные размеры двух ящиков. Поскольку положения и размеры различных блоков в наборе данных могут различаться, эти относительные положения и относительные размеры обычно требуют некоторых специальных преобразований, чтобы сделать распределение смещения более однородным и более легким для соответствия. Предположим, что координаты центра якорного блока A и назначенного ему ограничивающего прямоугольника B равны (xa, ya), (xb, yb), ширина A и B равна wa, wb, а их высота - ha, hb, соответственно. В этом случае распространенным методом является обозначение смещения A как
(xb - xa wa - µx σx, yb - ya ha - µy σy, log wb wa - µw σw, log hb ha - µh σh), (13.4.3)
Значения константы по умолчанию: µx = µy = µw = µh = 0, σx = σy = 0,1 и σw = σh = 0,2.
Если блоку привязки не назначен прямоугольник, ограничивающий основную истину, нам нужно только установить категорию блока привязки как фон. Якорные блоки, категория которых является фоном, часто упоминаются как отрицательные якорные боксы, а остальные упоминаются как положительные якорные боксы.
Ниже мы демонстрируем подробный пример. Мы определяем наземные ограничивающие прямоугольники для кошки и собаки на считанном изображении, где первым элементом является категория (0 для собаки, 1 для кошки), а оставшиеся четыре элемента - это координаты осей x, y в верхнем левом углу и Координаты осей x, y в правом нижнем углу (диапазон значений от 0 до 1). Здесь мы создаем пять якорных ящиков, которые будут помечены координатами верхнего левого угла и нижнего правого угла, которые записываются как A0 ,. . . , A4 соответственно (индекс в программе начинается с 0). Сначала нарисуйте положения этих якорных ящиков и ограничивающих прямоугольников на изображении.
Ground_truth = np.array ([[0, 0,1, 0,08, 0,52, 0,92],
[1, 0,55, 0,2, 0,9, 0,88]])
якоря = np.array ([[0, 0,1, 0,2, 0,3], [0,15, 0,2, 0,4, 0,4],
[0,63, 0,05, 0,88, 0,98], [0,66, 0,45, 0,8, 0,8],
[0,57, 0,3, 0,92, 0,9]])
fig = d2l.plt.imshow (img)
show_bboxes (fig.axes, ground_truth [:, 1:] * bbox_scale, ['собака', 'кошка'], 'k')
show_bboxes (fig.axes, anchors * bbox_scale, ['0', '1', '2', '3', '4']);

Мы можем маркировать категории и смещения для якорных ящиков с помощью функции multibox_target. Эта функция устанавливает категорию фона на 0 и увеличивает целочисленный индекс целевой категории с нуля на 1 (1 для собаки и 2 для кошки). Мы добавляем примерные размеры к якорным блокам и ограничивающим прямоугольникам с достоверной информацией и строим случайные предсказанные результаты с формой (размер пакета, количество категорий, включая фон, количество якорных ящиков) с помощью функции expand_dims.
labels = npx.multibox_target(np.expand_dims(anchors, axis=0),
np.expand_dims(ground_truth, axis=0), np.zeros((1, 3, 5)))

В возвращенном результате есть три элемента, все в тензорном формате. Третий элемент представлен категорией, обозначенной для поля привязки.
labels[2]
array([[0., 1., 2., 0., 2.]])

Мы анализируем эти помеченные категории на основе положений якорных ящиков и прямоугольных границ на изображении. Во-первых, во всех парах «блок привязки - ограничивающий прямоугольник на основании истинности» IoU прямоугольника привязки A4 к ограничивающему прямоугольнику «наземная истина» кошки является самым большим, поэтому категория прямоугольного прямоугольника A4 обозначается как cat. Без учета якорного ящика A4 или ограничивающего прямоугольника наземной истины кота, в оставшихся парах «якорь - ограничивающий прямоугольник» пара с наибольшим IoU является якорным ящиком A1 и ограничивающим прямоугольником наземной истины dog, поэтому категория якорного бокса A1 помечена как dog. Затем пройдитесь по оставшимся трем непомеченным якорным ящикам. В
категорией ограничивающего прямоугольника наземной достоверности с наибольшим IoU с блоком привязки A0 является собака, но IoU меньше порогового значения (по умолчанию 0,5), поэтому категория помечена как фоновая; категорией ограничивающего прямоугольника «наземная истина» с самым большим IoU с блоком привязки A2 является cat, а IoU больше порогового значения, поэтому категория помечена как cat; категорией ограничивающего прямоугольника наземной истины с наибольшим IoU с якорным блоком A3 является cat, но IoU меньше, чем порог, поэтому категория помечается как фон.
Второй элемент возвращаемого значения - это переменная маски, имеющая форму (размер пакета, в четыре раза превышающий количество якорей привязки). Элементы в переменной маске взаимно однозначно соответствуют четырем значениям смещения каждого блока привязки. Поскольку мы не заботимся об обнаружении фона, смещения отрицательного класса не должны влиять на целевую функцию. Путем умножения на элемент 0 в переменной маски может отфильтровать отрицательные смещения классов перед вычислением целевой функции.
labels[1]
array([[0., 0., 0., 0., 1., 1., 1., 1., 1., 1., 1., 1., 0., 0., 0., 0., 1., 1., 1., 1.]])

Первый возвращаемый элемент - это четыре значения смещения, помеченные для каждого якорного блока, со смещениями якорных ящиков отрицательного класса, помеченными как 0.
labels[0]
array([[0.00e+00, 0.00e+00, 0.00e+00, 0.00e+00, 1.40e+00, 1.00e+01,
2.59e+00, 7.18e+00, -1.20e+00, 2.69e-01, 1.68e+00, -1.57e+00,
0.00e+00, 0.00e+00, 0.00e+00, 0.00e+00, -5.71e-01, -1.00e+00,
-8.94e-07, 6.26e-01]])

13.4.4. Граничные рамки для прогнозов
На этапе прогнозирования модели мы сначала генерируем несколько якорных ящиков для изображения, а затем прогнозируем категории и смещения для этих якорных ящиков один за другим. Затем мы получаем ограничивающие прямоугольники прогнозирования на основе якорных прямоугольников и их прогнозируемых смещений. Когда имеется много якорных ящиков, для одной и той же цели может выводиться много похожих ограничивающих прямоугольников. Чтобы упростить результаты, мы можем удалить похожие ограничивающие рамки прогнозов. Часто используемый метод называется подавлением без максимума (NMS).
Давайте посмотрим, как работает NMS. Для ограничивающего прямоугольника прогнозирования B модель вычисляет прогнозируемую вероятность для каждой категории. Предположим, что наибольшая прогнозируемая вероятность равна p, категория, соответствующая этой вероятности, является прогнозируемой категорией B. Мы также называем p уровнем достоверности ограничивающего прямоугольника прогнозирования B. На том же изображении мы сортируем ограничивающие прямоугольники прогнозирования с прогнозируемыми категориями. кроме фона, по уровню достоверности от высокого к низкому, и получить список L. Выберите ограничивающую рамку прогнозирования B1 с наивысшим уровнем достоверности из L в качестве базовой линии и удалите все ограничивающие рамки прогнозирования, не являющиеся эталонными, с IoU с B1, превышающим определенный Порог из L. Здесь порог - это предварительно установленный гиперпараметр. На этом этапе L сохраняет ограничивающую рамку прогнозирования с наивысшим уровнем достоверности и удаляет другие ограничивающие рамки прогнозирования, похожие на нее. Затем выберите ограничивающую рамку прогнозирования B2 со вторым наивысшим уровнем достоверности из L в качестве базовой линии и удалите все ограничивающие рамки прогнозирования, не являющиеся эталонными, с IoU с B2 выше определенного порога из L. Повторяйте этот процесс до тех пор, пока все ограничительные рамки прогнозирования не будут в L использовались в качестве базового уровня. В это время IoU любой пары ограничивающих прямоугольников прогнозирования в L меньше порогового значения. Наконец, выведите все ограничивающие рамки прогноза в списке L.
Далее мы рассмотрим подробный пример. Сначала соорудите четыре якорных ящика. Для простоты мы предполагаем, что все предсказанные смещения равны нулю. Это означает, что ограничивающие прямоугольники предсказания являются якорными прямоугольниками. Наконец, мы строим прогнозируемую вероятность для каждой категории.
anchors = np.array ([[0,1, 0,08, 0,52, 0,92], [0,08, 0,2, 0,56, 0,95],
[0,15, 0,3, 0,62, 0,91], [0,55, 0,2, 0,9, 0,88]])
offset_preds = np.array ([0] * размер привязки)
cls_probs = np.array ([[0] * 4, # Прогнозируемая вероятность для фона
[0,9, 0,8, 0,7, 0,1], # Прогнозируемая вероятность для собаки
[0,1, 0,2, 0,3, 0,9]]) # Прогнозируемая вероятность для кошки

Распечатайте ограничительные рамки прогнозов и их уровни достоверности на изображении.
fig = d2l.plt.imshow (img)
show_bboxes (fig.axes, anchors * bbox_scale,
['dog = 0.9', 'dog = 0.8', 'dog = 0.7', 'cat = 0.9'])

Мы используем функцию multibox_detection для выполнения NMS и устанавливаем порог 0,5. Это добавляет примерное измерение к входу тензора. Мы видим, что форма возвращаемого результата (размер партии, количество якорей, 6). 6 элементов каждой строки представляют собой выходную информацию для одного и того же ограничивающего прямоугольника прогнозирования. Первый элемент - это прогнозируемый индекс категории, который начинается с 0 (0 - собака, 1 - кошка). Значение -1 указывает фон или удаление в NMS. Второй элемент - это уровень достоверности ограничивающего прямоугольника прогноза. Остальные четыре элемента - это координаты оси x, y верхнего левого угла и координаты оси x, y нижнего правого угла ограничивающего прямоугольника прогноза (диапазон значений от 0 до 1).
output = npx.multibox_detection(
np.expand_dims(cls_probs, axis=0),
np.expand_dims(offset_preds, axis=0),
np.expand_dims(anchors, axis=0),
nms_threshold=0.5)
output
array([[[0. , 0.9 , 0.1 , 0.08, 0.52, 0.92],
[1. , 0.9 , 0.55, 0.2 , 0.9 , 0.88],
[-1. , 0.8 , 0.08, 0.2 , 0.56, 0.95],
[-1. , 0.7 , 0.15, 0.3 , 0.62, 0.91]]])

Мы удаляем ограничивающие рамки прогноза категории -1 и визуализируем результаты, сохраняемые NMS.
fig = d2l.plt.imshow(img)
for i in output[0].asnumpy():
if i[0] == -1:
continue
label = ('dog=', 'cat=')[int(i[0])] + str(i[1])
show_bboxes(fig.axes, [np.array(i[2:]) * bbox_scale], label)

На практике мы можем удалить ограничивающие рамки прогнозирования с более низким уровнем достоверности перед выполнением NMS, тем самым уменьшив объем вычислений для NMS. Мы также можем фильтровать вывод NMS, например, сохраняя только результаты с более высоким уровнем достоверности в качестве окончательного результата.

Резюме
· Мы создаем несколько якорных ящиков с разными размерами и соотношением сторон, центрированными на каждом пикселе.
· IoU, также называемый индексом Жаккара, измеряет сходство двух ограничивающих прямоугольников. Это отношение площади пересечения к площади объединения двух ограничивающих прямоугольников.
· В обучающем наборе мы отмечаем два типа меток для каждого якорного блока: одна - это категория цели, содержащаяся в якорном блоке, а другая - смещение ограничивающего прямоугольника наземной истины относительно якорного блока.
· При прогнозировании мы можем использовать не максимальное подавление (NMS), чтобы удалить аналогичные ограничивающие рамки прогнозирования, тем самым упрощая результаты.

Упражнения
1. Измените значения размеров и соотношений в функции multibox_prior и проследите за изменениями в сгенерированных якорных блоках.
2. Постройте два ограничивающих прямоугольника с и IoU 0,5 и проследите за их совпадением.
3. Проверьте вывод меток смещения [0], отметив смещения якорной рамки, как определено в этом разделе (константа является значением по умолчанию).
4. Измените привязки переменных в разделах «Пометка якорей обучающего набора» и «Граничные рамки вывода для прогнозирования». Как меняются результаты?
Обсуждения190
190 https://discuss.d2l.ai/t/370
13.5. Обнаружение многомасштабных объектов
В Разделе 13.4 мы сгенерировали несколько якорных ящиков с центром в каждом пикселе входного изображения.
Эти якорные блоки используются для выборки различных областей входного изображения. Однако, если якорные блоки создаются с центром в каждом пикселе изображения, скоро будет слишком много якорных ящиков, чтобы мы могли их вычислить. Например, мы предполагаем, что входное изображение имеет высоту и ширину 561 и 728 пикселей соответственно. Если пять разных форм якорных ящиков генерируются с центром в каждом пикселе, необходимо спрогнозировать и пометить на изображении более двух миллионов якорных ящиков (561 × 728 × 5).
Уменьшить количество анкерных ящиков несложно. Самый простой способ - применить равномерную выборку к небольшой части пикселей входного изображения и создать якорные блоки с центром в выбранных пикселях. Кроме того, мы можем создавать якорные блоки различного числа и размеров в разных масштабах. Обратите внимание, что более мелкие объекты с большей вероятностью будут расположены на изображении, чем более крупные.
Здесь мы будем использовать простой пример: объекты с формами 1 × 1, 1 × 2 и 2 × 2 могут иметь 4, 2 и 1 возможную позицию (я) на изображении с формой 2 × 2. Следовательно, при использовании якорных ящиков меньшего размера для обнаружения более мелких объектов мы можем выбрать больше областей; при использовании якорных ящиков большего размера для обнаружения более крупных объектов мы можем выбрать меньшее количество областей.
Чтобы продемонстрировать, как создавать якорные блоки в нескольких масштабах, давайте сначала прочитаем изображение. Он имеет высоту и ширину 561 × 728 пикселей.
%matplotlib inline
from d2l import mxnet as d2l
from mxnet import image, np, npx
npx.set_np()
img = image.imread('../img/catdog.jpg')
h, w = img.shape[0:2]
h, w
(561, 728)

В разделе 6.2 выходные данные двумерного массива сверточной нейронной сети (CNN) называются картой характеристик. Мы можем определить средние точки якорных боксов, однородно выбранных на любом изображении, путем определения формы карты функций.
Функция display_anchors определена ниже. Мы собираемся сгенерировать якоря якорей с центром в каждой единице (пикселе) на карте функций fmap. Поскольку координаты осей x и y в блоках привязки, якоря разделены на ширину и высоту карты функций fmap, значения от 0 до 1 могут использоваться для представления относительного положения якорей на карте функций.
Поскольку средние точки якорей перекрываются со всеми единицами на карте функций fmap, относительные пространственные положения средних точек якорей на любом изображении должны иметь равномерное распределение. В частности, когда ширина и высота карты объектов установлены на fmap_w и fmap_h соответственно, функция будет проводить единообразную выборку для строк fmap_h и столбцов fmap_w пикселей и используйте их как средние точки для создания якорных ящиков с размером s (мы предполагаем, что длина списка s равна 1) и с различными пропорциями (соотношениями).
def display_anchors(fmap_w, fmap_h, s):
d2l.set_figsize()
The values from the first two dimensions will not affect the output
fmap = np.zeros((1, 10, fmap_w, fmap_h))
anchors = npx.multibox_prior(fmap, sizes=s, ratios=[1, 2, 0.5])
bbox_scale = np.array((w, h, w, h))
d2l.show_bboxes(d2l.plt.imshow(img.asnumpy()).axes,
anchors[0] * bbox_scale)

Сначала мы сосредоточимся на обнаружении мелких объектов. Чтобы упростить различение при отображении, блоки привязки с разными средними точками здесь не перекрываются. Мы предполагаем, что размер якорных ящиков равен 0,15, а высота и ширина карты функций - 4. Мы можем видеть, что средние точки якорных ящиков из 4 строк и 4 столбцов на изображении распределены равномерно.
display_anchors (fmap_w = 4, fmap_h = 4, s = [0,15])
Мы собираемся уменьшить высоту и ширину карты функций вдвое и использовать более крупный блок привязки для обнаружения более крупных объектов. Когда размер установлен на 0,4, будут происходить перекрытия между областями некоторых якорных ящиков.
display_anchors (fmap_w = 2, fmap_h = 2, s = [0,4])
Наконец, мы собираемся уменьшить высоту и ширину карты функций вдвое и увеличить размер якорного блока до 0,8. Теперь средняя точка якорного бокса - это центр изображения.
display_anchors (fmap_w = 1, fmap_h = 1, s = [0.8])
Поскольку мы сгенерировали якорные блоки разных размеров в разных масштабах, мы будем использовать их для обнаружения объектов разных размеров в разных масштабах. Теперь мы собираемся представить метод, основанный на сверточных нейронных сетях (CNN).
В определенном масштабе предположим, что мы генерируем наборы якорей размером h × w с разными средними точками на основе карт характеристик ci с формой h × w, а количество якорей в каждом наборе равно a. Например, для первого масштаба эксперимента мы генерируем 16 наборов якорных ящиков с разными средними точками на основе 10 (количество каналов) карт характеристик с формой 4 × 4, и каждый набор содержит 3 якорных ящика. Затем каждый блок привязки помечается категорией и смещением на основе классификации и положение ограничивающего прямоугольника. В текущем масштабе модель обнаружения объектов должна прогнозировать категорию и смещение наборов якорных ящиков h × w с различными средними точками на основе входного изображения.
Мы предполагаем, что карты характеристик ci являются промежуточным выходом CNN на основе входного изображения. Поскольку каждая карта функций имеет h × w различных пространственных положений, одно и то же положение будет иметь единицы. Согласно определению рецептивного поля в Разделе 6.2, единицы карты признаков в одной и той же пространственной позиции имеют одинаковое рецептивное поле на входном изображении. Таким образом, они представляют информацию входного изображения в том же самом воспринимаемом поле. Следовательно, мы можем преобразовать единицы ci карты признаков в одной и той же пространственной позиции в категории и смещения якорных блоков, сгенерированных с использованием этой позиции в качестве средней точки. Нетрудно увидеть, что, по сути, мы используем информацию входного изображения в определенном воспринимающем поле, чтобы предсказать категорию и смещение якорных ящиков рядом с полем на входном изображении.
Когда карты признаков разных слоев имеют на входном изображении воспринимающие поля разного размера, они используются для обнаружения объектов разных размеров. Например, мы можем спроектировать сеть с более широким восприимчивым полем для каждой единицы на карте функций, которая находится ближе к выходному слою, чтобы обнаруживать объекты с большими размерами во входном изображении.
В следующем разделе мы реализуем модель обнаружения многомасштабных объектов.

Резюме
· Мы можем создавать якорные блоки с разными числами и размерами в разных масштабах, чтобы обнаруживать объекты разных размеров в разных масштабах.
· Форму карты функций можно использовать для определения средней точки якорных боксов, которые равномерно сэмплируют любое изображение.
· Мы используем информацию для входного изображения из определенного воспринимающего поля, чтобы предсказать категорию и смещение якорей рядом с этим полем на изображении.

Упражнения
1. Для входного изображения предположим, что 1 × ci × h × w является формой карты признаков, а ci, h, w - это номер, высота и ширина карты объектов. Какие методы вы можете придумать для преобразования этой переменной в категорию и смещение якоря? Какая форма на выходе?
Обсуждения191
13.6. Набор данных для обнаружения объектов
В поле обнаружения объектов нет небольших наборов данных, таких как MNIST или Fashion-MNIST. Чтобы быстро протестировать модели, мы собираемся собрать небольшой набор данных. Сначала мы производим 1000 изображений бананов разных ракурсов и размеров с использованием бесплатных бананов из нашего офиса. Затем мы собираем серию фоновых изображений и размещаем изображение банана в случайном месте на каждом изображении. Мы используем инструмент im2rec192, предоставляемый MXNet, для преобразования изображений в двоичный формат RecordIO [1]. Этот формат может снизить накладные расходы на хранение набора данных на диске и повысить эффективность чтения. Если вы хотите узнать больше о том, как читать изображения, обратитесь к документации по GluonCV Toolkit193.
13.6.1. Загрузка набора данных
Набор данных по обнаружению бананов в формате RecordIO можно загрузить прямо из Интернета.
%matplotlib inline
from d2l import mxnet as d2l
from mxnet import gluon, image, np, npx
import os
npx.set_np()
#@save
d2l.DATA_HUB['bananas'] = (d2l.DATA_URL + 'bananas.zip',
'aadfd1c4c5d7178616799dd1801c9a234ccdaf19')
191 https://discuss.d2l.ai/t/371
192 https://github.com/apache/incubator-mxnet/blob/master/tools/im2rec.py
193 https://gluon-cv.mxnet.io/

13.6.2. Чтение набора данных
Мы собираемся прочитать набор данных обнаружения объектов, создав экземпляр ImageDetIter. «Det» в названии относится к обнаружению. Мы будем читать обучающий набор данных в случайном порядке. Поскольку мат набора данных - это RecordIO, нам нужен индексный файл изображения train.idx для чтения случайных мини-пакетов. Кроме того, для каждого изображения обучающего набора мы будем использовать случайную обрезку и требовать, чтобы обрезанное изображение покрыло не менее 95% каждого объекта. Поскольку кадрирование происходит случайно, это требование не всегда выполняется. Мы предварительно установили максимальное количество случайных попыток обрезки равным 200. Если ни одна из них не соответствует требованиям, изображение не будет обрезано. Чтобы гарантировать достоверность вывода, мы не будем произвольно обрезать изображения в тестовом наборе данных. Нам также не нужно читать тестовый набор данных в случайном порядке.
#@save
def load_data_bananas(batch_size, edge_size=256):
"""Load the bananas dataset."""
data_dir = d2l.download_extract('bananas')
train_iter = image.ImageDetIter(
path_imgrec=os.path.join(data_dir, 'train.rec'),
path_imgidx=os.path.join(data_dir, 'train.idx'),
batch_size=batch_size,
data_shape=(3, edge_size, edge_size), # The shape of the output image
shuffle=True, # Read the dataset in random order
rand_crop=1, # The probability of random cropping is 1
min_object_covered=0.95, max_attempts=200)
val_iter = image.ImageDetIter(
path_imgrec=os.path.join(data_dir, 'val.rec'), batch_size=batch_size,
data_shape=(3, edge_size, edge_size), shuffle=False)
return train_iter, val_iter

Ниже мы читаем мини-серию и распечатываем форму изображения и этикетки. Форма изображения такая же, как и в предыдущем эксперименте (размер партии, количество каналов, высота, ширина) в форме метки (размер пакета, m, 5), где m равно максимальному количеству ограничивающих рамок, содержащихся в одном изображении в наборе данных. Хотя вычисления для мини-пакета очень эффективны, оно требует, чтобы каждое изображение содержало одинаковое количество ограничивающих прямоугольников, чтобы их можно было разместить в одном пакете. Поскольку каждое изображение может иметь разное количество ограничивающих прямоугольников, мы можем добавлять недопустимые ограничивающие прямоугольники к изображениям, которые имеют менее m ограничивающих прямоугольников, пока каждое изображение не будет содержать m ограничивающих прямоугольников. Таким образом, мы можем каждый раз читать мини-серию изображений. Метка каждой ограничивающей рамки на изображении представлена ​​массивом длины 5. Первый элемент в массиве - это категория объекта, содержащегося в ограничивающей рамке. Когда значение равно -1, ограничивающая рамка является недопустимой ограничивающей рамкой для заполнения. Остальные четыре элемента массива представляют координаты оси x, y верхнего левого угла ограничивающей рамки и координаты оси x, y нижнего правого угла ограничивающей рамки (диапазон значений составляет от 0 до 1)). Набор данных бананов здесь имеет только одну ограничивающую рамку для каждого изображения, поэтому m = 1.
batch_size, edge_size = 32, 256
train_iter, _ = load_data_bananas (размер_пачки, размер_ребка)
batch = train_iter.next ()
batch.data [0] .shape, batch.label [0] .shape

Загрузка ../data/bananas.zip с http://d2l-data.s3-accelerate.amazonaws.com/bananas.zip.
((32, 3, 256, 256), (32, 1, 5))

13.6.3. Демонстрация
У нас есть десять изображений с ограничивающими рамками. Мы видим, что угол, размер и положение банана на каждом изображении различаются. Конечно, это простой искусственный набор данных. На практике данные обычно намного сложнее.
imgs = (batch.data[0][0:10].transpose(0, 2, 3, 1)) / 255
axes = d2l.show_images(imgs, 2, 5, scale=2)
for ax, label in zip(axes, batch.label[0][0:10]):
d2l.show_bboxes(ax, [label[0][1:5] * edge_size], colors=['w'])

Резюме
· Синтезированный набор данных обнаружения бананов можно использовать для тестирования моделей обнаружения объектов.
· Считывание данных для обнаружения объекта аналогично считыванию данных для классификации изображений. Однако после введения ограничивающих рамок форма метки и увеличение изображения (например, случайное кадрирование) изменяются.

Упражнения
1. Ссылаясь на документацию MXNet, каковы параметры конструкторов классов image.ImageDetIter и image.CreateDetAugmenter? В чем их значение?

Обсуждения194
194 https://discuss.d2l.ai/t/37
13.7. Обнаружение Multibox Single Shot (SSD)
В нескольких предыдущих разделах мы представили ограничивающие прямоугольники, якорные рамки, обнаружение многомасштабных объектов и наборы данных. Теперь мы будем использовать эти базовые знания для создания объекта.
модель обнаружения: одиночное многоканальное обнаружение (SSD) (Liu et al., 2016). Эта быстрая и простая модель уже широко используется. Некоторые концепции дизайна и детали реализации этой модели также применимы к другим моделям обнаружения объектов.
13.7.1. Модель
Рис. 13.7.1 показан дизайн модели SSD. Основными компонентами модели являются базовый сетевой блок и несколько блоков многомасштабных функций, соединенных последовательно. Здесь базовый сетевой блок используется для извлечения характеристик исходных изображений и обычно принимает форму глубокой сверточной нейронной сети. В документе о твердотельных накопителях предлагается разместить усеченный VGG перед слоем классификации (Liu et al., 2016), но теперь его обычно заменяют ResNet. Мы можем спроектировать базовую сеть так, чтобы она выдавала большие значения высоты и ширины. Таким образом, на основе этой карты функций создается больше якорей, что позволяет нам обнаруживать более мелкие объекты. Затем каждый многомасштабный функциональный блок уменьшает высоту и ширину карты признаков, предоставленной предыдущим слоем (например, он может уменьшать размеры вдвое). Затем блоки используют каждый элемент карты функций для расширения воспринимающего поля на входном изображении. Таким образом, чем ближе многомасштабный функциональный блок к верхней части рис. 13.7.1, чем меньше его выходная карта объектов, и тем меньше якорей создается на основе карты объектов. Кроме того, чем ближе функциональный блок к вершине, тем больше воспринимающее поле каждого элемента на карте функций и тем лучше оно подходит для обнаружения более крупных объектов. Поскольку SSD генерирует разное количество якорных ящиков разного размера на основе базового сетевом блоке и каждом многомасштабном функциональном блоке, а затем прогнозирует категории и смещения (т. е. прогнозируемые ограничивающие рамки) якорных блоков для обнаружения объектов разного размера, SSD - это модель обнаружения многомасштабных объектов.

Рис. 13.7.1: SSD состоит из базового сетевого блока и нескольких блоков многомасштабных функций, соединенных последовательно.
Далее опишем реализацию модулей на рис. 13.7.1. Во-первых, нам нужно обсудить реализацию прогнозирования категорий и прогнозирования ограничивающего прямоугольника.
13.7.1.2. Категория Прогнозный уровень
Установите количество категорий объектов на q. В этом случае количество категорий якоря равно q + 1, где 0 указывает якорь, который содержит только фон. Для определенного масштаба установите высоту и ширину карты функций на h и w соответственно. Если мы используем каждый элемент в качестве центра для создания якорных ящиков, нам нужно классифицировать все якорные ящики hwa. Если мы используем полностью связанный слой (FCN) для вывода, это, скорее всего, приведет к чрезмерному количеству параметров моделей. Вспомните, как мы использовали каналы сверточного слоя для вывода прогнозов категорий в разделе 7.3. SSD использует тот же метод для уменьшения сложности модели.
В частности, слой прогнозирования категории использует сверточный слой, который поддерживает входную высоту и ширину. Таким образом, выходные и входные данные имеют взаимно однозначное соответствие пространственным координатам по ширине и высоте карты функций. Предполагая, что выходные и входные данные имеют одинаковые пространственные координаты (x, y), канал для координат (x, y) на выходной карте функций содержит прогнозы категорий для всех якорных ящиков, сгенерированных с использованием координат входной карты функций (x , y) как центр. Следовательно, существует (q + 1) выходных каналов, причем выходные каналы проиндексированы как i (q + 1) + j (0 ≤ j ≤ q), представляющие прогнозы индекса категории j для индекса i якоря.
Теперь мы определим уровень прогнозирования категории этого типа. После того, как мы укажем параметры a и q, он использует сверточный слой 3 × 3 с отступом 1. Высота и ширина входа и выхода этого сверточного слоя остаются неизменными.
%matplotlib inline
from d2l import mxnet as d2l
from mxnet import autograd, gluon, image, init, np, npx
from mxnet.gluon import nn
npx.set_np()
def cls_predictor(num_anchors, num_classes):
return nn.Conv2D(num_anchors * (num_classes + 1), kernel_size=3,
padding=1)

13.7.1.3. Слой прогнозирования ограничивающей рамки
Структура уровня прогнозирования ограничивающей рамки аналогична структуре уровня прогнозирования категории.
Единственная разница в том, что здесь нам нужно спрогнозировать 4 смещения для каждого блока привязки, а не q + 1 категорий.
def bbox_predictor (num_anchors):
вернуть nn.Conv2D (num_anchors * 4, kernel_size = 3, padding = 1)

13.7.1.4. Объединение прогнозов для нескольких шкал
Как мы уже упоминали, SSD использует карты функций, основанные на нескольких масштабах, для создания якорных ящиков и прогнозирования их категорий и смещений. Поскольку формы и количество якорных ящиков сосредоточены на один и тот же элемент различается для карт признаков разного масштаба, результаты прогнозов в разных масштабах могут иметь разные формы.
В следующем примере мы используем один и тот же пакет данных для построения карт функций двух разных масштабов, Y1 и Y2. Здесь Y2 имеет половину высоты и половину ширины Y1. Используя прогнозирование категории в качестве примера, мы предполагаем, что каждый элемент в картах характеристик Y1 и Y2 генерирует пять (Y1) или три (Y2) якорных бокса. Когда имеется 10 категорий объектов, количество выходных каналов прогнозирования категорий составляет либо 5 × (10 + 1) = 55, либо 3 × (10 + 1) = 33. Формат вывода прогнозирования следующий (размер пакета, количество каналов, высота ширина). Как видите, кроме размера партии, размеры остальных размеров отличаются. Следовательно, мы должны преобразовать их в согласованный формат и объединить прогнозы нескольких масштабов, чтобы облегчить последующие вычисления.
def forward(x, block):
block.initialize()
return block(x)
Y1 = forward(np.zeros((2, 8, 20, 20)), cls_predictor(5, 10))
Y2 = forward(np.zeros((2, 16, 10, 10)), cls_predictor(3, 10))
(Y1.shape, Y2.shape)
((2, 55, 20, 20), (2, 33, 10, 10))

Размер канала содержит прогнозы для всех якорей с одинаковым центром. Сначала мы перемещаем размер канала до последнего измерения. Поскольку размер пакета одинаков для всех масштабов, мы можем преобразовать результаты прогнозирования в двоичный формат (размер пакета, высота × ширина × количество каналов), чтобы облегчить последующую конкатенацию в 1-м измерении.
def flatten_pred(pred):
return npx.batch_flatten(pred.transpose(0, 2, 3, 1))
def concat_preds(preds):
return np.concatenate([flatten_pred(p) for p in preds], axis=1)

Таким образом, независимо от различных форм Y1 и Y2, мы все равно можем объединить результаты прогнозирования для двух разных масштабов одной и той же партии.
concat_preds([Y1, Y2]).shape
(2, 25300)

13.7.1.5. Блок субдискретизации высоты и ширины
Для обнаружения многомасштабных объектов мы определяем следующий блок down_sample_blk, который уменьшает высоту и ширину на 50%. Этот блок состоит из двух сверточных слоев 3 × 3 с заполнением из 1 и 2 × 2 максимального слоя объединения с шагом 2, соединенных последовательно. Как мы знаем, сверточные слои 3 × 3 с отступом 1 не изменяют форму карт признаков. Однако последующий слой объединения напрямую уменьшает размер карты объектов вдвое. Поскольку 1 × 2 + (3 - 1) + (3 - 1) = 6, каждый элемент в выходной карте объектов имеет принимающее поле на входной карте объектов в форме 6 × 6. Как вы можете видеть, высота и Блок субдискретизации ширины увеличивает восприимчивое поле каждого элемента в выходной карте функций.
def down_sample_blk(num_channels):
blk = nn.Sequential()
for _ in range(2):
blk.add(nn.Conv2D(num_channels, kernel_size=3, padding=1),
nn.BatchNorm(in_channels=num_channels),
nn.Activation('relu'))
blk.add(nn.MaxPool2D(2))
return blk

Тестируя прямое вычисление в блоке субдискретизации высоты и ширины, мы видим, что он изменяет количество входных каналов и вдвое уменьшает высоту и ширину вперед (np.zeros ((2, 3, 20, 20)), down_sample_blk (10)) .shape (2, 10, 10, 10).
13.7.1.6. Базовый сетевой блок
Базовый сетевой блок используется для извлечения функций из исходных изображений. Для упрощения расчета построим небольшую базовую сеть. Эта сеть состоит из трех блоков субдискретизации по высоте и ширине, соединенных последовательно, поэтому количество каналов удваивается на каждом шаге.
Когда мы вводим исходное изображение с формой 256 × 256, базовый сетевой блок выводит карту признаков с формой 32 × 32.
def base_net ():
blk = nn.Sequential ()
для num_filters в [16, 32, 64]:
blk.add (down_sample_blk (num_filters))
вернуть blk
вперед (np.zeros ((2, 3, 256, 256)), base_net ()). shape
(2, 64, 32, 32)

13.7.1.7. Полная модель
Модель SSD содержит всего пять модулей. Каждый модуль выводит карту характеристик, используемую для создания якорных ящиков и прогнозирования категорий и смещений этих якорных ящиков. Первый модуль - это базовый сетевой блок, со второго по четвертый - это блоки субдискретизации по высоте и ширине, а пятый модуль - это глобальный максимальный уровень объединения, который уменьшает высоту и ширину до 1. Следовательно, модули со второго по пятый - все это многомасштабные функциональные блоки, показанные на рис. 13.7.1.
def get_blk(i):
if i == 0:
blk = base_net()
elif i == 4:
blk = nn.GlobalMaxPool2D()
else:
blk = down_sample_blk(128)
return blk

Теперь мы определим процесс прямого вычисления для каждого модуля. В отличие от ранее описанных сверточных нейронных сетей, этот модуль не только возвращает карту характеристик Y, выведенную сверточным вычислением, но также якорные блоки текущего масштаба, сгенерированные из Y, и их предсказанные категории и смещения.
def blk_forward (X, blk, size, ratio, cls_predictor, bbox_predictor):
Y = blk (X)
anchors = npx.multibox_prior(Y, sizes=size, ratios=ratio)
cls_preds = cls_predictor(Y)
bbox_preds = bbox_predictor(Y)
return (Y, anchors, cls_preds, bbox_preds)

Как мы уже упоминали, чем ближе многомасштабный функциональный блок находится к верхнему краю на рис. 13.7.1, чем больше размер обнаруживаемых объектов и тем больше якорные блоки, которые он должен создать. Здесь мы сначала разделим интервал от 0,2 до 1,05 на пять равных частей, чтобы определить размеры меньших якорных ящиков в разных масштабах: 0,2, 0,37, 0,54 и т. Д. Тогда согласно √0,2 × 0,37 = 0,272, √0,37 × 0,54 = 0,447, а по аналогичным формулам мы определяем размеры якорных ящиков большего размера в разных масштабах.
sizes = [[0.2, 0.272], [0.37, 0.447], [0.54, 0.619], [0.71, 0.79],
[0.88, 0.961]]
ratios = [[1, 2, 0.5]] * 5
num_anchors = len(sizes[0]) + len(ratios[0]) – 1

Теперь мы можем определить полную модель TinySSD.
class TinySSD(nn.Block):
def __init__(self, num_classes, **kwargs):
super(TinySSD, self).__init__(**kwargs)
self.num_classes = num_classes
for i in range(5):
The assignment statement is self.blk_i = get_blk(i)
setattr(self, f'blk_{i}', get_blk(i))
setattr(self, f'cls_{i}', cls_predictor(num_anchors, num_classes))
setattr(self, f'bbox_{i}', bbox_predictor(num_anchors))
def forward(self, X):
anchors, cls_preds, bbox_preds = [None] * 5, [None] * 5, [None] * 5
for i in range(5):
getattr(self, 'blk_%d' % i) accesses self.blk_i
X, anchors[i], cls_preds[i], bbox_preds[i] = blk_forward(
X, getattr(self, f'blk_{i}'), sizes[i], ratios[i],
getattr(self, f'cls_{i}'), getattr(self, f'bbox_{i}'))
In the reshape function, 0 indicates that the batch size remains
unchanged
anchors = np.concatenate(anchors, axis=1)
cls_preds = concat_preds(cls_preds)
cls_preds = cls_preds.reshape(
cls_preds.shape[0], -1, self.num_classes + 1)
bbox_preds = concat_preds(bbox_preds)
return anchors, cls_preds, bbox_preds

Теперь мы создаем экземпляр модели SSD и используем его для выполнения прямого вычисления на мини-пакете изображений X, который имеет высоту и ширину 256 пикселей. Как мы проверили ранее, первый модуль выводит карту функций с формой 32 × 32. Поскольку модули со второго по четвертый являются блоками с субдискретизацией по высоте и ширине, модуль пять является глобальным слоем объединения, и каждый элемент в карте функций используется в качестве центр для 4 якорных ящиков, всего (322 + 162 + 82 + 42 + 1) × 4 = 5444 якорных ящика создается для каждого изображения в пяти масштабах.
net = TinySSD(num_classes=1)
net.initialize()
X = np.zeros((32, 3, 256, 256))
anchors, cls_preds, bbox_preds = net(X)
print('output anchors:', anchors.shape)
print('output class preds:', cls_preds.shape)
print('output bbox preds:', bbox_preds.shape)
output anchors: (1, 5444, 4)
output class preds: (32, 5444, 2)
output bbox preds: (32, 21776)

13.7.2. Обучение
Теперь мы шаг за шагом объясним, как обучить модель SSD обнаружению объектов.
13.7.2.1. Чтение и инициализация данных
Мы читаем набор данных обнаружения бананов, который мы создали в предыдущем разделе.
batch_size = 32
train_iter, _ = d2l.load_data_bananas(batch_size)

В наборе данных обнаружения бананов есть 1 категория. После определения модуля нам нужно инициализировать параметры модели и определить алгоритм оптимизации.
device, net = d2l.try_gpu(), TinySSD(num_classes=1)
net.initialize(init=init.Xavier(), ctx=device)
trainer = gluon.Trainer(net.collect_params(), 'sgd',
{'learning_rate': 0.2, 'wd': 5e-4})

13.7.2.2. Определение функций потерь и оценки
Обнаружение объекта подвержено двум типам потерь. Первый - это потеря категории якорного бокса. Для этого мы можем просто повторно использовать функцию потерь кросс-энтропии, которую мы использовали при классификации изображений. Вторая потеря - положительное смещение якорной коробки. Прогнозирование смещения - это проблема нормализации. Однако здесь мы не используем квадрат потерь, введенный ранее. Скорее, мы используем потерю нормы L1, которая представляет собой абсолютное значение разницы между прогнозируемым значением и достоверным значением.
Переменная маски bbox_masks удаляет отрицательные блоки привязки и поля привязки заполнения из расчета потерь. Наконец, мы добавляем категорию якорного бокса и компенсируем потери, чтобы найти окончательную функцию потерь для модели.
cls_loss = gluon.loss.SoftmaxCrossEntropyLoss()
bbox_loss = gluon.loss.L1Loss()
def calc_loss(cls_preds, cls_labels, bbox_preds, bbox_labels, bbox_masks):
cls = cls_loss(cls_preds, cls_labels)
bbox = bbox_loss(bbox_preds * bbox_masks, bbox_labels * bbox_masks)
return cls + bbox

Мы можем использовать показатель точности для оценки результатов классификации. Поскольку мы используем потерю нормы L1, мы будем использовать среднюю абсолютную ошибку для оценки результатов прогнозирования ограничивающей рамки.
def cls_eval(cls_preds, cls_labels):
Because the category prediction results are placed in the final
dimension, argmax must specify this dimension
return float((cls_preds.argmax(axis=-1).astype(
cls_labels.dtype) == cls_labels).sum())
def bbox_eval(bbox_preds, bbox_labels, bbox_masks):
return float((np.abs((bbox_labels - bbox_preds) * bbox_masks)).sum())

13.7.2.3. Обучение модели
Во время обучения модели мы должны сгенерировать многомасштабные якорные блоки (якоря) в модели для процесса вычисления отделения и предсказать категорию (cls_preds) и смещение (bbox_preds) для каждого якорного блока. После этого мы маркируем категорию (cls_labels) и смещение (bbox_labels) каждого сгенерированного якорного бокса на основе информации метки Y. Наконец, мы вычисляем функцию потерь, используя предсказанные и помеченные значения категории и смещения. Чтобы упростить код, мы не оцениваем обучающий набор данных здесь.
num_epochs, timer = 20, d2l.Timer()
animator = d2l.Animator(xlabel='epoch', xlim=[1, num_epochs],
legend=['class error', 'bbox mae'])
for epoch in range(num_epochs):
accuracy_sum, mae_sum, num_examples, num_labels
metric = d2l.Accumulator(4)
train_iter.reset() # Read data from the start.
for batch in train_iter:
timer.start()
X = batch.data[0].as_in_ctx(device)
Y = batch.label[0].as_in_ctx(device)
with autograd.record():
Generate multiscale anchor boxes and predict the category and
offset of each
anchors, cls_preds, bbox_preds = net(X)
Label the category and offset of each anchor box
bbox_labels, bbox_masks, cls_labels = npx.multibox_target(
anchors, Y, cls_preds.transpose(0, 2, 1))
Calculate the loss function using the predicted and labeled
category and offset values
l = calc_loss(cls_preds, cls_labels, bbox_preds, bbox_labels,
bbox_masks)
l.backward()
trainer.step(batch_size)
metric.add(cls_eval(cls_preds, cls_labels), cls_labels.size,
bbox_eval(bbox_preds, bbox_labels, bbox_masks),
bbox_labels.size)
cls_err, bbox_mae = 1-metric[0]/metric[1], metric[2]/metric[3]
animator.add(epoch+1, (cls_err, bbox_mae))
print(f'class err {cls_err:.2e}, bbox mae {bbox_mae:.2e}')
print(f'{train_iter.num_image/timer.stop():.1f} examples/sec on '
f'{str(device)}')
class err 5.07e-03, bbox mae 5.42e-03
4496.9 examples/sec on gpu(0)

13.7.3. Прогнозирование
На этапе прогнозирования мы хотим обнаружить все интересующие объекты на изображении. Ниже мы читаем тестовое изображение и трансформируем его размер. Затем мы конвертируем его в четырехмерный формат, необходимый для сверточного слоя.
img = image.imread ('../ img / banana.jpg')
feature = image.imresize (img, 256, 256) .astype ('float32')
X = np.expand_dims (feature.transpose (2, 0, 1), ось = 0)

Используя функцию MultiBoxDetection, мы прогнозируем ограничивающие прямоугольники на основе якорных прямоугольников и их прогнозируемых смещений. Затем мы используем не максимальное подавление, чтобы удалить похожие ограничивающие рамки.
def predict(X):
anchors, cls_preds, bbox_preds = net(X.as_in_ctx(device))
cls_probs = npx.softmax(cls_preds).transpose(0, 2, 1)
output = npx.multibox_detection(cls_probs, bbox_preds, anchors)
idx = [i for i, row in enumerate(output[0]) if row[0] != -1]
return output[0, idx]
output = predict(X)

Наконец, мы берем все ограничивающие прямоугольники с уровнем достоверности не менее 0,3 и отображаем их как окончательный результат.
def display(img, output, threshold):
d2l.set_figsize((5, 5))
fig = d2l.plt.imshow(img.asnumpy())
for row in output:
score = float(row[1])
if score < threshold:
continue
h, w = img.shape[0:2]
bbox = [row[2:6] * np.array((w, h, w, h), ctx=row.ctx)]
d2l.show_bboxes(fig.axes, bbox, '%.2f' % score, 'w')
display(img, output, threshold=0.9)

Резюме
· SSD - это многомасштабная модель обнаружения объектов. Эта модель генерирует разное количество четырех блоков разных размеров на основе базового сетевого блока и каждого многомасштабного функционального блока и прогнозирует категории и смещения якорных блоков для обнаружения объектов разных размеров.
· Во время обучения модели SSD функция потерь вычисляется с использованием предсказанных и помеченных значений категории и смещения.

Упражнения
1. Из-за нехватки места мы проигнорировали некоторые детали реализации моделей SSD в этом эксперименте. Можете ли вы улучшить модель в следующих областях?

13.7.3.1. Функция потерь
Для прогнозируемых смещений замените потерю нормы L1 на потерю регуляризации L1. Эта функция потерь использует функцию квадрата около нуля для большей гладкости. Это регуляризованная область, управляемая гиперпараметром σ:
f (x) = {(σx) 2/2, если | x | <1 / σ2
| x | - 0,5 / σ2, в противном случае (13.7.1)

Когда σ велико, эти потери аналогичны потерям нормы L1. Когда значение мало, функция потерь более плавная.
sigmas = [10, 1, 0.5]
lines = ['-', '--', '-.']
x = np.arange(-2, 2, 0.1)
d2l.set_figsize()
for l, s in zip(lines, sigmas):
y = npx.smooth_l1(x, scalar=s)
d2l.plt.plot(x.asnumpy(), y.asnumpy(), l, label='sigma=%.1f' % s)
d2l.plt.legend();

В эксперименте мы использовали кросс-энтропийную потерю для прогнозирования категорий. Теперь предположим, что вероятность предсказания фактической категории j равна pj, а потеря кросс-энтропии - log pj. Мы также можем использовать фокальные потери (Lin et al., 2017). Учитывая положительные гиперпараметры γ и α, эта потеря определяется в виде:
−α (1 - pj) γlog pj. (13.7.2)
Как видите, увеличивая γ, мы можем эффективно уменьшить потери, когда вероятность предсказания правильной категории высока.
def focal_loss (гамма, x):
возврат - (1 - x) ** гамма * np.log (x)
х = np.arange (0,01, 1, 0,01)
для l, гамма в zip (строки, [0, 1, 5]):
y = d2l.plt.plot (x.asnumpy (), focal_loss (гамма, x) .asnumpy (), l,
label = 'gamma =%. 1f'% gamma)
d2l.plt.legend ();

13.7.3.2. Обучение и прогнозирование
2. Когда объект относительно большой по сравнению с изображением, модель обычно принимает больший размер входного изображения.
3. Обычно это приводит к появлению большого количества отрицательных якорных ящиков при маркировке категорий якорных ящиков. Мы можем выбрать отрицательные якорные блоки, чтобы лучше сбалансировать категории данных.
Для этого мы можем установить параметр negative_mining_ratio функции MultiBoxTarget.
4. Присвойте гиперпараметры с разными весами потерям категории якорного бокса и потерям положительного смещения якорного бокса в функции потерь.
5. См. Документ о SSD. Какие методы можно использовать для оценки точности моделей обнаружения объектов (Liu et al., 2016)?

Обсуждения195
13.8. CNN на основе региона (R-CNN)
Сверточные нейронные сети на основе регионов или регионы с функциями CNN (R-CNN) представляют собой новаторский подход, который применяет глубокие модели к обнаружению объектов (Girshick et al., 2014). В этом разделе мы обсудим R-CNN и ряд улучшений, внесенных в них: Fast R-CNN (Girshick, 2015), Faster R-CNN (Ren et al., 2015) и Mask R-CNN (He et al., 2017a). Из-за нехватки места мы ограничимся обсуждением конструкции этих моделей.
13.8.1. R-CNN
Модели R-CNN сначала выбирают несколько предложенных областей изображения (например, якорные блоки - это один из методов выбора), а затем маркируют свои категории и ограничивающие прямоугольники (например, смещения).
Затем они используют CNN для выполнения прямых вычислений для извлечения функций из каждой предложенной области. После этого мы используем особенности каждого предложенного региона, чтобы предсказать их категории и ограничивающие рамки. Инжир. 13.8.1 показывает модель R-CNN.
195 https://discuss.d2l.ai/t/373
Рис 13.8.1: Модель R-CNN.
В частности, R-CNN состоят из четырех основных частей:
1. На входном изображении выполняется выборочный поиск для выбора нескольких предлагаемых областей высокого качества (Uijlings et al., 2013). Эти предлагаемые области обычно выбираются в нескольких масштабах и имеют разные формы и размеры. Категория и ограничивающая рамка достоверности каждый предлагаемый регион помечен.
2. Предварительно обученная CNN выбирается и помещается в усеченной форме перед выходным слоем. Он преобразует каждую предложенную область во входные размеры, необходимые для сети, и использует прямое вычисление для вывода функций, извлеченных из предложенных областей.
3. Характеристики и помеченные категории каждой предложенной области объединены в качестве примера для обучения нескольких опорных векторных машин классификации объектов. Здесь каждая машина опорных векторов используется для определения того, принадлежит ли пример к определенной категории.
4. Характеристики и помеченный ограничивающий прямоугольник каждой предложенной области объединены в качестве примера для обучения модели линейной регрессии для наземного предсказания ограничивающего прямоугольника.
Хотя модели R-CNN используют предварительно обученные CNN для эффективного извлечения функций изображения, основным недостатком является низкая скорость. Как вы понимаете, мы можем выбрать тысячи предлагаемых областей из одного изображения, что потребует тысяч прямых вычислений из CNN для выполнения обнаружения объектов. Эта огромная вычислительная нагрузка означает, что R-CNN не используются широко в реальных приложениях.
13.8.2. Быстрый R-CNN
Основным узким местом производительности модели R-CNN является необходимость независимого извлечения характеристик для каждой предлагаемой области. Поскольку эти области имеют высокую степень перекрытия, независимое извлечение признаков приводит к большому количеству повторяющихся вычислений. Fast R-CNN улучшает R-CNN, выполняя только прямые вычисления CNN для изображения в целом.
Рис 13.8.2: Модель Fast R-CNN.
Рис 13.8.2 показывает модель Fast R-CNN. Ниже описаны основные этапы вычислений:
1. По сравнению с моделью R-CNN, модель Fast R-CNN использует все изображение в качестве входных данных CNN для функции извлечения, а не каждую предлагаемую область. Более того, эта сеть обычно обучена обновлению параметров модели. Поскольку вход - это все изображение, форма выхода CNN - 1 × c × h1 × w1.
2. Предполагая, что выборочный поиск генерирует n предложенных областей, их разные формы указывают на области интересов (RoI) различной формы на выходе CNN. Из этих RoI должны быть извлечены элементы одинаковой формы (здесь мы предполагаем, что высота равна h2, а ширина - w2). Fast R-CNN представляет объединение RoI, которое использует выходные данные CNN и RoI в качестве входных данных для вывода конкатенации функций, извлеченных из каждой предложенной области с формой.
n × c × h2 × w2.
3. Полностью связанный слой используется для преобразования выходной формы в n × d, где d определяется дизайном модели.
4. Во время прогнозирования категории форма выходных данных полностью связанного слоя снова преобразуется в n × q, и мы используем регрессию softmax (q - количество категорий). Во время прогнозирования ограничивающей рамки форма выходных данных полностью подключенного слоя снова преобразуется в n × 4. Это означает, что мы прогнозируем категорию и ограничивающую рамку для каждого предложенного региона.
Уровень объединения RoI в Fast R-CNN несколько отличается от слоев объединения, которые мы обсуждали ранее. В обычном слое объединения мы устанавливаем окно объединения, отступы и шаг для управления выходной формой. На уровне объединения RoI мы можем напрямую указать выходную форму каждой области, например, указать высоту и ширину каждой области как h2, w2. Предполагая, что высота и ширина окна RoI равны h и w, это окно делится на сетку подокон формы h2 × w2. Размер каждого подокна составляет примерно (h / h2) × (w / w2). Высота и ширина подокна всегда должны быть целыми числами, а самый большой элемент используется в качестве вывода для данного подокна. Это позволяет слою объединения RoI извлекать элементы одной формы из RoI разной формы.
На рис. 13.8.3, мы выбираем область 3 × 3 в качестве RoI входа 4 × 4. Для этого RoI мы используем уровень объединения 2x2 RoI, чтобы получить один выход 2x2. Когда мы делим область на четыре подокна, они соответственно содержат элементы 0, 1, 4 и 5 (5 - самый большой); 2 и 6 (6 - самый большой); 8 и 9 (9 - самый большой); и 10.
Рис. 13.8.3: уровень пула 2 × 2 RoI.
Мы используем функцию ROIPooling, чтобы продемонстрировать вычисление уровня пула RoI. Предположим, что CNN извлекает элемент X с высотой и шириной 4 и только с одним каналом.
from mxnet import np, npx
npx.set_np()
X = np.arange(16).reshape(1, 1, 4, 4)
X
array([[[[0., 1., 2., 3.],
[4., 5., 6., 7.],
[8., 9., 10., 11.],
[12., 13., 14., 15.]]]])

Предположим, что высота и ширина изображения равны 40 пикселям и что выборочный поиск генерирует две предложенные области на изображении. Каждая область выражается пятью элементами: категорией объекта области и координатами x, y ее верхнего левого и нижнего правого углов.
rois = np.array ([[0, 0, 0, 20, 20], [0, 0, 10, 30, 30]])
Поскольку высота и ширина X составляют 1/10 высоты и ширины изображения, координаты из двух предложенных регионов умножаются на 0,1 в соответствии с пространственным_масштабом, а затем RoI помечаются на X как X [:,:, 0: 3, 0: 3] и X [:,: ,, 1: 4, 0 : 4] соответственно. Наконец, мы разделяем две RoI на сетку подокна и извлекаем функции с высотой и шириной 2.
npx.roi_pooling(X, rois, pooled_size=(2, 2), spatial_scale=0.1)
array([[[[5., 6.],
[9., 10.]]],
[[[9., 11.],
[13., 15.]]]])

13.8.3. Более быстрый R-CNN
Чтобы получить точные результаты обнаружения объекта, Fast R-CNN обычно требует, чтобы многие предложенные области были сгенерированы при выборочном поиске. Более быстрый R-CNN заменяет выборочный поиск сетью региональных предложений. Это уменьшает количество предлагаемых генерируемых областей, обеспечивая при этом точное обнаружение объекта.
Рис. 13.8.4: Более быстрая модель R-CNN.
Рис. 13.8.4 показывает модель Faster R-CNN. По сравнению с Fast R-CNN, Faster R-CNN только изменяет метод генерации предлагаемых регионов с выборочного поиска на сеть предложений по регионам. Остальные части модели остались без изменений. Подробный процесс расчета сети предложения региона описан ниже:
1. Мы используем сверточный слой 3 × 3 с заполнением 1 для преобразования вывода CNN и устанавливаем количество выходных каналов равным c. Таким образом, каждый элемент карты характеристик, которую CNN извлекает из изображения, представляет собой новую функцию с длиной c.
2. Мы используем каждый элемент карты функций в качестве центра для создания нескольких якорных блоков разных размеров и соотношений сторон, а затем помечаем их.
3. Мы используем особенности элементов длины c в центре якорных ящиков, чтобы предсказать двоичную категорию (объект или фон) и ограничивающий прямоугольник для их соответствующих якорных ящиков.
4. Затем мы используем не максимальное подавление, чтобы удалить похожие результаты ограничивающей рамки, которые соответствуют предсказаниям категории «объект». Наконец, мы выводим предсказанные ограничивающие прямоугольники как предлагаемые области, необходимые для слоя объединения RoI.
Стоит отметить, что в рамках модели Faster R-CNN сеть региональных предложений обучается вместе с остальной частью модели. Кроме того, функции объекта Faster R-CNN включают предсказания категории и ограничивающего прямоугольника при обнаружении объекта, а также предсказания двоичной категории и ограничивающего прямоугольника для якорных боксов в сети предложения региона. Наконец, сеть предложений регионов может научиться генерировать предлагаемые регионы высокого качества, что сокращает количество предлагаемых регионов при сохранении точности обнаружения объектов.
13.8.4. Маска R-CNN
Если обучающие данные помечены позициями на уровне пикселей каждого объекта в изображении, модель Mask R-CNN может эффективно использовать эти подробные метки для дальнейшего повышения точности обнаружения объекта.
Рис. 13.8.5: Модель Mask R-CNN.
Как показано на рис. 13.8.5, Mask R-CNN является модификацией модели Faster R-CNN. Модели Mask R-CNN заменяют слой объединения RoI на слой выравнивания RoI. Это позволяет использовать билинейную интерполяцию для сохранения пространственной информации на картах признаков, что делает Mask R-CNN более подходящей для предсказаний на уровне пикселей. Слой выравнивания RoI выводит карты объектов одинаковой формы для всех RoI. Это не только предсказывает категории и ограничивающие рамки RoI, но и позволяет нам использовать дополнительную полностью сверточную сеть для предсказания положений объектов на уровне пикселей. Далее в этой главе мы опишем, как использовать полностью сверточные сети для прогнозирования семантики пиксельного уровня в изображениях.

Резюме
1. Модель R-CNN выбирает несколько предложенных регионов и использует CNN для выполнения прямых вычислений и извлечения характеристик из каждой предложенной области. Затем он использует эти функции для прогнозирования категорий и ограничивающих рамок предлагаемых регионов.
2. Fast R-CNN улучшает R-CNN, выполняя только прямые вычисления CNN для изображения в целом. Он вводит слой объединения RoI для извлечения элементов одной формы из RoI разной формы.
3. Faster R-CNN заменяет выборочный поиск, используемый в Fast R-CNN, сетью предложения региона. Это уменьшает количество предлагаемых генерируемых областей, обеспечивая при этом точное обнаружение объектов.
4. Mask R-CNN использует ту же базовую структуру, что и Faster R-CNN, но добавляет полностью сверточный слой, чтобы помочь найти объекты на уровне пикселей и еще больше повысить точность обнаружения объектов.
Упражнения
1. Изучите реализацию каждой модели в наборе инструментов GluonCV196, относящемся к этому разделу.
Обсуждения197
13.9. Семантическая сегментация и набор данных
При обсуждении проблем обнаружения объектов в предыдущих разделах мы использовали только прямоугольные ограничивающие рамки для маркировки и прогнозирования объектов на изображениях. В этом разделе мы рассмотрим семантическую сегментацию, которая пытается сегментировать изображения на регионы с разными семантическими категориями. Эти семантические области маркируют и предсказывают объекты на уровне пикселей. Рис. 13.9.1 показывает семантически сегментированное изображение с областями, помеченными как «собака», «кошка» и «фон». Как вы можете видите, по сравнению с обнаружением объектов, семантическая сегментация помечает области границами на уровне пикселей для значительно большей точности.
Рис. 13.9.1: семантически сегментированное изображение с областями, помеченными как «собака», «кошка» и «фон».
13.9.1. Сегментация изображения и сегментация экземпляра
В области компьютерного зрения есть два важных метода, связанных с семантической сегментацией: сегментация изображения и сегментация экземпляра. Здесь мы будем отличать эти концепции от семантической сегментации следующим образом:
· При сегментации изображение делится на несколько составляющих. Этот метод обычно использует корреляции между пикселями изображения. Во время обучения метки для пикселей изображения не нужны. Однако во время прогнозирования этот метод не может гарантировать, что сегментированные регионы обладают нужной нам семантикой. Если мы введем изображение в 9.10, сегментация изображения может разделить собаку на две области: одна покрывает рот и глаза собаки, где черный является заметным цветом, а другая покрывает остальную часть собаки, где желтый является заметным цветом.
· Сегментация экземпляра также называется одновременным обнаружением и сегментацией. Этот метод пытается идентифицировать области пиксельного уровня каждого экземпляра объекта в изображении. В отличие от семантической сегментации, сегментация экземпляров различает не только семантику, но и разные экземпляры объектов. Если изображение содержит двух собак, то при сегментации экземпляров будет различаться, какие пиксели принадлежат какой собаке.
196 https://github.com/dmlc/gluon-cv/
197 https://discuss.d2l.ai/t/374

13.9.2. Набор данных семантической сегментации Pascal VOC2012
В области семантической сегментации одним из важных наборов данных является Pascal VOC2012198. Чтобы лучше понять этот набор данных, мы должны сначала импортировать пакет или модуль, необходимый для эксперимента.
%matplotlib inline
from d2l import mxnet as d2l
from mxnet import gluon, image, np, npx
import os
npx.set_np()

Исходный сайт может быть нестабильным, поэтому мы загружаем данные с зеркального сайта. Размер архива около 2 ГБ, так что загрузка займет некоторое время. После распаковки архива набор данных находится по пути ../data/VOCdevkit/VOC2012.
#@save
d2l.DATA_HUB['voc2012'] = (d2l.DATA_URL + 'VOCtrainval_11-May-2012.tar',
'4e443f8a2eca6b1dac8a6c57641b67dd40621a49')
voc_dir = d2l.download_extract('voc2012', 'VOCdevkit/VOC2012')

Перейдите на ../data/VOCdevkit/VOC2012, чтобы увидеть различные части набора данных. Путь ImageSets / Segmentation содержит текстовые файлы, в которых указаны примеры обучения и тестирования. Пути JPEGIm age и SegmentationClass содержат примеры входных изображений и меток соответственно.
Эти метки также имеют формат изображения и имеют те же размеры, что и входные изображения, которым они соответствуют. В ярлыках пиксели одного цвета относятся к одной семантической категории.
Функция read_voc_images, определенная ниже, считывает все входные изображения и метки в память.
#@save
def read_voc_images(voc_dir, is_train=True):
"""Read all VOC feature and label images."""
txt_fname = os.path.join(voc_dir, 'ImageSets', 'Segmentation',
'train.txt' if is_train else 'val.txt')
with open(txt_fname, 'r') as f:
images = f.read().split()
features, labels = [], []
for i, fname in enumerate(images):
features.append(image.imread(os.path.join(
voc_dir, 'JPEGImages', f'{fname}.jpg')))
labels.append(image.imread(os.path.join(
voc_dir, 'SegmentationClass', f'{fname}.png')))
return features, labels
train_features, train_labels = read_voc_images(voc_dir, True)

Рисуем первые пять входных изображений и их надписи. На изображениях этикеток белый цвет представляет границы, а черный - фон. Остальные цвета соответствуют разным категориям.
n = 5
imgs = train_features[0:n] + train_labels[0:n]
d2l.show_images(imgs, 2, n);

198 http://host.robots.ox.ac.uk/pascal/VOC/voc2012/

Затем мы перечисляем каждое значение цвета RGB в метках и категории, которые они маркируют.
#@save
VOC_COLORMAP = [[0, 0, 0], [128, 0, 0], [0, 128, 0], [128, 128, 0],
[0, 0, 128], [128, 0, 128], [0, 128, 128], [128, 128, 128],
[64, 0, 0], [192, 0, 0], [64, 128, 0], [192, 128, 0],
[64, 0, 128], [192, 0, 128], [64, 128, 128], [192, 128, 128],
[0, 64, 0], [128, 64, 0], [0, 192, 0], [128, 192, 0],
[0, 64, 128]]

#@save
VOC_CLASSES = ['background', 'aeroplane', 'bicycle', 'bird', 'boat',
'bottle', 'bus', 'car', 'cat', 'chair', 'cow',
'diningtable', 'dog', 'horse', 'motorbike', 'person',
'potted plant', 'sheep', 'sofa', 'train', 'tv/monitor']

После определения двух констант выше мы можем легко найти индекс категории для каждого пикселя в метках.
#@save
def build_colormap2label():
"""Build an RGB color to label mapping for segmentation."""
colormap2label = np.zeros(256 ** 3)
for i, colormap in enumerate(VOC_COLORMAP):
colormap2label[(colormap[0]*256 + colormap[1])*256 + colormap[2]] = i
return colormap2label
#@save
def voc_label_indices(colormap, colormap2label):
"""Map an RGB color to a label."""
colormap = colormap.astype(np.int32)
idx = ((colormap[:, :, 0] * 256 + colormap[:, :, 1]) * 256
+ colormap[:, :, 2])
return colormap2label[idx]

Например, в первом примере изображения индекс категории для передней части самолета равен 1, а индекс для фона равен 0.
y = voc_label_indices(train_labels[0], build_colormap2label())
y[105:115, 130:140], VOC_CLASSES[1]
(array([[0., 0., 0., 0., 0., 0., 0., 0., 0., 1.],
[0., 0., 0., 0., 0., 0., 0., 1., 1., 1.],
[0., 0., 0., 0., 0., 0., 1., 1., 1., 1.],
[0., 0., 0., 0., 0., 1., 1., 1., 1., 1.],
[0., 0., 0., 0., 0., 1., 1., 1., 1., 1.],
[0., 0., 0., 0., 1., 1., 1., 1., 1., 1.],
[0., 0., 0., 0., 0., 1., 1., 1., 1., 1.],
[0., 0., 0., 0., 0., 1., 1., 1., 1., 1.],
[0., 0., 0., 0., 0., 0., 1., 1., 1., 1.],
[0., 0., 0., 0., 0., 0., 0., 0., 1., 1.]]),
'aeroplane')

13.9.2.1. Предварительная обработка данных
В предыдущих главах мы масштабировали изображения, чтобы они соответствовали исходной форме модели. В семантической сегментации, этот метод потребует от нас повторного сопоставления предсказанных категорий пикселей и вернуться к исходному входному изображению. Сделать это точно будет очень сложно, особенно в сегментированные регионы с разной семантикой. Чтобы избежать этой проблемы, мы обрезаем изображения, чтобы установить размеры и не масштабировать их. В частности, мы используем метод случайной обрезки, используемый в увеличении изображения для обрезки той же области из входных изображений и их меток.
#@save
def voc_rand_crop(feature, label, height, width):
"""Randomly crop for both feature and label images."""
feature, rect = image.random_crop(feature, (width, height))
label = image.fixed_crop(label, *rect)
return feature, label
imgs = []
for _ in range(n):
imgs + = voice_rand_crop (train_features [0], train_labels [0], 200, 300)
d2l.show_images (imgs [:: 2] + imgs [1 :: 2], 2, n);

13.9.2.2. Классы наборов данных для пользовательской семантической сегментации
Мы используем унаследованный класс набора данных, предоставленный Gluon, для настройки класса набора данных семантической сегментации VOCSegDataset. Реализуя функцию __getitem__, мы можем произвольно обращаться к входному изображению с индексом idx и индексами категорий для каждого из его пикселей из набора данных.
Поскольку некоторые изображения в наборе данных могут быть меньше выходных размеров, указанных для случайной обрезки, мы должны удалить этот пример, используя функцию настраиваемого фильтра. Кроме того, мы определяем функцию normalize_image для нормализации каждого из трех каналов RGB картинки входного сигнала.
#@save
class VOCSegDataset(gluon.data.Dataset):
"""A customized dataset to load VOC dataset."""
def __init__(self, is_train, crop_size, voc_dir):
self.rgb_mean = np.array([0.485, 0.456, 0.406])
self.rgb_std = np.array([0.229, 0.224, 0.225])
self.crop_size = crop_size
features, labels = read_voc_images(voc_dir, is_train=is_train)
self.features = [self.normalize_image(feature)
for feature in self.filter(features)]
self.labels = self.filter(labels)
self.colormap2label = build_colormap2label()
print('read ' + str(len(self.features)) + ' examples')
def normalize_image(self, img):
return (img.astype('float32') / 255 - self.rgb_mean) / self.rgb_std
def filter(self, imgs):
return [img for img in imgs if (
img.shape[0] >= self.crop_size[0] and
img.shape[1] >= self.crop_size[1])]
def __getitem__(self, idx):
feature, label = voc_rand_crop(self.features[idx], self.labels[idx],
*self.crop_size)
return (feature.transpose(2, 0, 1),
voc_label_indices(label, self.colormap2label))
def __len__(self):
return len(self.features)

13.9.2.3. Чтение набора данных
Используя пользовательский класс VOCSegDataset, мы создаем экземпляры обучающего набора и тестового набора. Мы предполагаем, что операция случайного кадрирования выводит изображения в форме 320 × 480. Ниже мы можем видеть количество примеров, оставшихся в обучающей и тестовой выборках.
crop_size = (320, 480)
voc_train = VOCSegDataset(True, crop_size, voc_dir)
voc_test = VOCSegDataset(False, crop_size, voc_dir)
read 1114 examples
read 1078 examples

Мы устанавливаем размер пакета равным 64 и определяем итераторы для наборов для обучения и тестирования. Распечатайте форму первой мини-партии. В отличие от классификации изображений и распознавания объектов, метки здесь представляют собой трехмерные массивы.
batch_size = 64
train_iter = gluon.data.DataLoader(voc_train, batch_size, shuffle=True,
last_batch='discard',
num_workers=d2l.get_dataloader_workers())
for X, Y in train_iter:
print(X.shape)
print(Y.shape)
break
(64, 3, 320, 480)
(64, 320, 480)

13.9.2.4. Собираем все вместе
Наконец, мы определяем функцию load_data_voc, которая загружает и загружает этот набор данных, а затем повторно включает итераторы данных.
#@save
def load_data_voc(batch_size, crop_size):
"""Download and load the VOC2012 semantic dataset."""
voc_dir = d2l.download_extract('voc2012', os.path.join(
'VOCdevkit', 'VOC2012'))
num_workers = d2l.get_dataloader_workers()
train_iter = gluon.data.DataLoader(
VOCSegDataset(True, crop_size, voc_dir), batch_size,
shuffle=True, last_batch='discard', num_workers=num_workers)
test_iter = gluon.data.DataLoader(
VOCSegDataset(False, crop_size, voc_dir), batch_size,
last_batch='discard', num_workers=num_workers)
return train_iter, test_iter

Резюме
· Семантическая сегментация рассматривает, как изображения могут быть сегментированы на регионы с различными семантическими категориями.
· В области семантической сегментации одним из важных наборов данных является Pascal VOC2012.
· Поскольку входные изображения и метки при семантической сегментации имеют однозначное соответствие на уровне пикселей, мы случайным образом обрезаем их до фиксированного размера, а не масштабируем.
Упражнения
1. Вспомните содержание, которое мы рассмотрели в Разделе 13.1. Какой из методов увеличения изображения, используемых при классификации изображений, было бы трудно использовать при семантической сегментации?
Обсуждения199
13.10. Транспонированная свертка
Слои, которые мы ввели до сих пор для сверточных нейронных сетей, включая сверточные слои (раздел 6.2) и слои объединения (раздел 6.5), часто уменьшая входную ширину и высоту или оставляя их неизменными. Однако такие приложения, как семантическая сегментация (раздел 13.9) и генеративные состязательные сети (раздел 17.2), требуют прогнозирования значений для каждого пикселя и, следовательно, должны увеличивать входную ширину и высоту. Этой цели служит транспонированная свертка, также называемая сверткой с дробным шагом (Dumoulin & Visin, 2016) или деконволюцией (Long et al., 2015).
from mxnet import np, npx, init
from mxnet.gluon import nn
from d2l import mxnet as d2l
npx.set_np()

13.10.1. Базовая двумерная транспонированная свертка
Давайте рассмотрим базовый случай, когда и входной, и выходной каналы равны 1, с 0 заполнением и 1 шагом.
На Рис. 13.10.1 показано, как транспонированная свертка с ядром 2 × 2 вычисляется для входной матрицы 2 × 2.

Рис. 13.10.1: Транспонированный сверточный слой с ядром 2 × 2.
Мы можем реализовать эту операцию, указав матричное ядро ​​K и матричный вход X.
def trans_conv(X, K):
h, w = K.shape
Y = np.zeros((X.shape[0] + h - 1, X.shape[1] + w - 1))
for i in range(X.shape[0]):
for j in range(X.shape[1]):
Y[i: i + h, j: j + w] += X[i, j] * K
return Y

199 https://discuss.d2l.ai/t/375

Помните, что свертка вычисляет результаты по формуле Y [i, j] = (X [i: i + h, j: j + w] * K). sum () (см. corr2d в разделе 6.2), который суммирует входные значения через ядро. В то время как транспонированная свертка передает входные значения через ядро, что приводит к большей выходной форме.
Проверьте результаты на рис. 13.10.1.
X = np.array([[0, 1], [2, 3]])
K = np.array([[0, 1], [2, 3]])
trans_conv(X, K)
array([[0., 0., 1.],
[0., 4., 6.],
[4., 12., 9.]])

Или мы можем использовать nn.Conv2DTranspose для получения тех же результатов. Как и nn.Conv2D, и вход, и ядро ​​должны быть 4-мерными тензорами.
X, K = X.reshape(1, 1, 2, 2), K.reshape(1, 1, 2, 2)
tconv = nn.Conv2DTranspose(1, kernel_size=2)
tconv.initialize(init.Constant(K))
tconv(X)
array([[[[0., 0., 1.],
[0., 4., 6.],
[4., 12., 9.]]]])

13.10.2. Отступы, полосы и каналы
Мы применяем элементы заполнения к входу в свертке, в то время как они применяются к выходу в транспонированной свертке. Заполнение 1 × 1 означает, что мы сначала вычисляем вывод как обычно, а затем удаляем первые / последние строки и столбцы.
tconv = nn.Conv2DTranspose(1, kernel_size=2, padding=1)
tconv.initialize(init.Constant(K))
tconv(X)
array([[[[4.]]]])

Точно так же шаги применяются и к выходам.
tconv = nn.Conv2DTranspose(1, kernel_size=2, strides=2)
tconv.initialize(init.Constant(K))
tconv(X)
array([[[[0., 0., 0., 1.],
[0., 0., 2., 3.],
[0., 2., 0., 3.],
[4., 6., 6., 9.]]]])

Многоканальное расширение транспонированной свертки такое же, как свертка. Когда вход имеет несколько каналов, обозначенных ci, транспонированная свертка назначает матрицу ядра kh × kw каждому входному каналу. Если выход имеет размер канала co, то у нас есть ядро ​​ci × kh × kw для каждого выходного канала.
В результате, если мы введем X в сверточный слой f для вычисления Y = f (X) и создадим транспонированный сверточный слой g с теми же гиперпараметрами, что и f, за исключением размера выходного канала X, тогда g (Y) должен иметь такой же формы, как X. Проверим это утверждение.
X = np.random.uniform(size=(1, 10, 16, 16))
conv = nn.Conv2D(20, kernel_size=5, padding=2, strides=3)
tconv = nn.Conv2DTranspose(10, kernel_size=5, padding=2, strides=3)
conv.initialize()
tconv.initialize()
tconv(conv(X)).shape == X.shape
True

13.10.3. Аналогия с транспонированием матрицы
Транспонированная свертка получила свое название от транспонирования матрицы. Фактически, операции свертки также могут быть выполнены умножением матриц. В приведенном ниже примере мы определяем вход X 3 × с ядром K 2 × 2, а затем используем corr2d для вычисления вывода свертки.
X = np.arange(9).reshape(3, 3)
K = np.array([[0, 1], [2, 3]])
Y = d2l.corr2d(X, K)
Y
array([[19., 25.],
[37., 43.]])

Затем мы перепишем ядро ​​свертки K как матрицу W. Ее форма будет (4, 9), где i-я строка будет применять ядро ​​ко входу для генерации i-го выходного элемента.
def kernel2matrix (K):
k, W = np.zeros(5), np.zeros((4, 9))
k[:2], k[3:5] = K[0, :], K[1, :]
W[0, :5], W[1, 1:6], W[2, 3:8], W[3, 4:] = k, k, k, k
return W
W = kernel2matrix(K)
W
array([[0., 1., 0., 2., 3., 0., 0., 0., 0.],
[0., 0., 1., 0., 2., 3., 0., 0., 0.],
[0., 0., 0., 0., 1., 0., 2., 3., 0.],
[0., 0., 0., 0., 0., 1., 0., 2., 3.]])

Тогда оператор свертки может быть реализован путем умножения матриц с соответствующим изменением формы.
Y == np.dot(W, X.reshape(-1)).reshape(2, 2)
array([[True, True],
[True, True]])

Мы также можем реализовать транспонированную свертку как умножение матриц, повторно используя ядро2матрица. Чтобы повторно использовать сгенерированный W, мы создаем вход 2 × 2, поэтому соответствующая весовая матрица будет иметь форму (9, 4), которая равна W⊤. Проверим результаты.
X = np.array([[0, 1], [2, 3]])
Y = trans_conv(X, K)
Y == np.dot(W.T, X.reshape(-1)).reshape(3, 3)
array([[True, True, True],
[True, True, True],
[True, True, True]])

Резюме
· По сравнению со свертками, которые сокращают ввод через ядра, транспонированные свертки транслируют ввод.
· Если сверточный слой уменьшает входную ширину и высоту на nw и hh раз, соответственно.
Затем транспонированный сверточный слой с такими же размерами ядра, заполнением и шагами увеличит входную ширину и высоту на nw и nh соответственно.
· Мы можем реализовать операции свертки посредством умножения матриц, соответствующие транспонированные свертки могут быть выполнены посредством перемножения транспонированных матриц.
Упражнения
1. Насколько эффективно использовать умножение матриц для выполнения операций свертки? Почему?
Обсуждения200
13.11. Полностью сверточные сети (FCN)
Ранее мы обсуждали семантическую сегментацию с использованием каждого пикселя изображения для прогнозирования категории. Полностью сверточная сеть (FCN) (Long et al., 2015) использует сверточную нейронную сеть для преобразования пикселей изображения в категории пикселей. В отличие от ранее представленных сверточных нейронных сетей, FCN преобразует высоту и ширину карты признаков промежуточного слоя обратно в размер входного изображения через транспонированный сверточный слой, так что прогнозы имеют однозначное соответствие с входным изображением. в пространственном измерении (высоте и ширине). Учитывая положение в пространственном измерении, выходом измерения канала будет прогноз категории пикселя, соответствующего местоположению.

200 https://discuss.d2l.ai/t/376

Сначала мы импортируем пакет или модуль, необходимый для эксперимента, а затем объясним транспонированный сверточный слой.
%matplotlib inline
from d2l import mxnet as d2l
from mxnet import gluon, image, init, np, npx
from mxnet.gluon import nn
npx.set_np()

13.11.1. Построение модели
Здесь мы демонстрируем самый простой дизайн модели полностью сверточной сети. Как показано на рис. 13.11.1, полностью сверточная сеть сначала использует сверточную нейронную сеть для извлечения изображения, затем преобразует количество каналов в количество категорий через сверточный слой 1 × 1 и, наконец, преобразует высоту и ширину карты признаков в размер входного изображения с помощью транспонированного сверточного слоя Раздел 13.10. Выходные данные модели имеют ту же высоту и ширину, что и входное изображение, и имеют взаимно однозначное соответствие в пространственных положениях. Последний выходной канал содержит предсказание категории пикселя соответствующей пространственной позиции.
Рис. 13.11.1: Полностью сверточная сеть.
Ниже мы используем модель ResNet-18, предварительно обученную на наборе данных ImageNet, для извлечения функций изображения и записи экземпляра сети как pretrained_net. Как видите, последние два слоя функций переменных-членов модели - это глобальный максимальный слой объединения GlobalAvgPool2D и примерный слой выравнивания Flatten. Модуль вывода содержит полностью связанный слой, используемый для вывода. Эти слои не требуются для полностью сверточной сети.
pretrained_net = gluon.model_zoo.vision.resnet18_v2(pretrained=True)
pretrained_net.features[-4:], pretrained_net.output
(HybridSequential(
(0): BatchNorm(axis=1, eps=1e-05, momentum=0.9, fix_gamma=False, use_global_stats=False,␣
,→in_channels=512)
(1): Activation(relu)
(2): GlobalAvgPool2D(size=(1, 1), stride=(1, 1), padding=(0, 0), ceil_mode=True, global_
,→pool=True, pool_type=avg, layout=NCHW)
(3): Flatten
),
Dense(512 -> 1000, linear))

Затем мы создаем полностью сверточную сеть экземпляров сети. Он дублирует все нейронные уровни, кроме двух последних слоев функций переменных-членов экземпляра pretrained_net и параметры модели, полученные после предварительного обучения.
net = nn.HybridSequential()
for layer in pretrained_net.features[:-2]:
net.add(layer)

При вводе высоты и ширины 320 и 480 соответственно, прямое вычисление сети уменьшит высоту и ширину ввода до 1/32 от оригинала, то есть 10 и 15.
X = np.random.uniform(size=(1, 3, 320, 480))
net(X).shape
(1, 512, 10, 15)

Затем мы преобразуем количество выходных каналов в количество категорий Pascal VOC2012 (21) через сверточный слой 1 × 1. Наконец, нам нужно увеличить высоту и ширину карту объектов с коэффициентом 32, чтобы вернуть их к высоте и ширине входного изображения.
Напомним метод расчета выходной формы сверточного слоя, описанный в разделе 6.3.
Поскольку (320 - 64 + 16 × 2 + 32) / 32 = 10 и (480 - 64 + 16 × 2 + 32) / 32 = 15, мы создаем транспонированный сверточный слой с шагом 32 и устанавливаем высоту и ширину ядра свертки до 64 и заполнения до 16. Нетрудно увидеть, что, если шаг равен s, заполнение равно s / 2 (при условии, что s / 2 является целым числом), а высота и ширина свертки ядро 2s, транспонированное ядро ​​свертки увеличит как высоту, так и ширину ввода в s раз.
num_classes = 21
net.add(nn.Conv2D(num_classes, kernel_size=1),
nn.Conv2DTranspose(
num_classes, kernel_size=64, padding=16, strides=32))

13.11.2. Инициализация транспонированного слоя свертки
Мы уже знаем, что транспонированный сверточный слой может увеличивать карту объектов. При обработке изображений иногда требуется увеличить изображение, то есть повысить разрешение. Существует множество методов повышения частоты дискретизации, и один из распространенных методов - это билинейная интерполяция. Проще говоря, чтобы получить пиксель выходного изображения в координатах (x, y), координаты сначала сопоставляются с координатами входного изображения (x ', y'). Это можно сделать исходя из соотношения размеров трех входов к размеру выхода. Отображенные значения x ′ и y′ обычно это реальные числа. Затем мы находим четыре пикселя, ближайших к координате (x ′, y ′) на входном изображении. Наконец, пиксели выходного изображения в координатах (x, y) вычисляются на основе этих четырех пикселей на входном изображении и их относительных расстояний до (x ', y'). Повышающая дискретизация с помощью билинейной интерполяции может быть реализована с помощью транспонированного сверточного слоя ядра свертки, построенного с использованием следующей функции bilinear_kernel. Из-за нехватки места мы приводим только реализацию функции bi linear_kernel и не будем обсуждать принципы алгоритма.
def bilinear_kernel(in_channels, out_channels, kernel_size):
factor = (kernel_size + 1) // 2
if kernel_size % 2 == 1:
center = factor - 1
else:
center = factor - 0.5
og = (np.arange(kernel_size).reshape(-1, 1),
np.arange(kernel_size).reshape(1, -1))
filt = (1 - np.abs(og[0] - center) / factor) * \
(1 - np.abs(og[1] - center) / factor)
weight = np.zeros((in_channels, out_channels, kernel_size, kernel_size))
weight[range(in_channels), range(out_channels), :, :] = filt
return np.array(weight)

Теперь мы поэкспериментируем с повышающей дискретизацией билинейной интерполяции, реализованной транспонированными сверточными слоями. Создайте транспонированный сверточный слой, увеличивающий высоту и ширину ввода с коэффициентом 2 и инициализирующий его ядро ​​свертки с помощью функции bilinear_kernel.
conv_trans = nn.Conv2DTranspose(3, kernel_size=4, padding=1, strides=2)
conv_trans.initialize(init.Constant(bilinear_kernel(3, 3, 4)))

Считайте изображение X и запишите результат передискретизации как Y. Чтобы распечатать изображение, нам нужно отрегулировать положение размера канала.
img = image.imread('../img/catdog.jpg')
X = np.expand_dims(img.astype('float32').transpose(2, 0, 1), axis=0) / 255
Y = conv_trans(X)
out_img = Y[0].transpose(1, 2, 0)

Как видите, транспонированный сверточный слой увеличивает как высоту, так и ширину изображения в 2 раза. Стоит отметить, что, помимо разницы в масштабе координат, изображение, увеличенное с помощью билинейной интерполяции, и исходное изображение, напечатанное в разделе 13.3 выглядят так же.
d2l.set_figsize()
print('input image shape:', img.shape)
d2l.plt.imshow(img.asnumpy());
print('output image shape:', out_img.shape)
d2l.plt.imshow(out_img.asnumpy());
input image shape: (561, 728, 3)
output image shape: (1122, 1456, 3)

В полностью сверточной сети мы инициализируем транспонированный сверточный слой для билинейной интерполяции с повышением дискретизации. Для сверточного слоя 1 × 1 мы используем Xavier для случайной инициализации.
W = bilinear_kernel(num_classes, num_classes, 64)
net[-1].initialize(init.Constant(W))
net[-2].initialize(init=init.Xavier())

13.11.3. Чтение набора данных
Мы читаем набор данных, используя метод, описанный в предыдущем разделе. Здесь мы указываем форму случайно обрезанного выходного изображения как 320 × 480, поэтому и высота, и ширина делятся на 32.
batch_size, crop_size = 32, (320, 480)
train_iter, test_iter = d2l.load_data_voc(batch_size, crop_size)
Downloading ../data/VOCtrainval_11-May-2012.tar from http://d2l-data.s3-accelerate.amazonaws.
,→com/VOCtrainval_11-May-2012.tar...
read 1114 examples
read 1078 examples

13.11.4. Обучение
Теперь мы можем приступить к обучению модели. Функция потерь и расчет точности здесь существенно не отличаются от тех, которые используются при классификации изображений. Поскольку мы используем канал транспонированного сверточного слоя для прогнозирования категорий пикселей, опция axis = 1 (размер канала) указывается в SoftmaxCrossEntropyLoss. Кроме того, модель вычисляет точность на основе правильности категории прогнозирования каждого пикселя.
num_epochs, lr, wd, devices = 5, 0.1, 1e-3, d2l.try_all_gpus()
loss = gluon.loss.SoftmaxCrossEntropyLoss(axis=1)
net.collect_params().reset_ctx(devices)
trainer = gluon.Trainer(net.collect_params(), 'sgd',
{'learning_rate': lr, 'wd': wd})
d2l.train_ch13(net, train_iter, test_iter, loss, trainer, num_epochs, devices)
loss 0.334, train acc 0.889, test acc 0.835
268.3 examples/sec on [gpu(0), gpu(1)]

13.11.5. Прогнозирование
Во время прогнозирования нам необходимо стандартизировать входное изображение в каждом канале и преобразовать его в четырехмерный входной формат, необходимый для сверточной нейронной сети.
def predict(img):
X = test_iter._dataset.normalize_image(img)
X = np.expand_dims(X.transpose(2, 0, 1), axis=0)
pred = net(X.as_in_ctx(devices[0])).argmax(axis=1)
return pred.reshape(pred.shape[1], pred.shape[2])

Чтобы визуализировать предсказанные категории для каждого пикселя, мы сопоставляем предсказанные категории с их помеченными цветами в наборе данных.
def label2image(pred):
colormap = np.array(d2l.VOC_COLORMAP, ctx=devices[0], dtype='uint8')
X = pred.astype('int32')
return colormap[X, :]

Размер и форма изображений в тестовом наборе данных различаются. Поскольку в модели используется транспонированный сверточный слой с шагом 32, когда высота или ширина входного изображения не делятся на 32, высота или ширина выходного транспонированного сверточного слоя отклоняется от размера входного изображения. Чтобы решить эту проблему, мы можем обрезать несколько прямоугольных областей изображения с высотой и шириной как целое число, кратное 32, а затем выполнить прямое вычисление для пикселей в этих областях. В сочетании эти области должны полностью покрывать входное изображение. Когда пиксель покрывается несколькими областями, среднее значение транспонированного сверточного слоя, выводимое при прямом вычислении различных областей, может использоваться в качестве входных данных для операции softmax для прогнозирования категории.
Для простоты мы считываем только несколько больших тестовых изображений и обрезаем область размером 320 × 480 в верхнем левом углу изображения. Только эта область используется для прогнозов. Для входного изображения мы сначала печатаем обрезанную область, затем печатаем прогнозируемый результат и, наконец, печатаем помеченную категорию.
voc_dir = d2l.download_extract('voc2012', 'VOCdevkit/VOC2012')
test_images, test_labels = d2l.read_voc_images(voc_dir, False)
n, imgs = 4, []
for i in range(n):
crop_rect = (0, 0, 480, 320)
X = image.fixed_crop(test_images[i], *crop_rect)
pred = label2image(predict(X))
imgs += [X, pred, image.fixed_crop(test_labels[i], *crop_rect)]
d2l.show_images(imgs[::3] + imgs[1::3] + imgs[2::3], 3, n, scale=2);

Резюме
· Полностью сверточная сеть сначала использует сверточную нейронную сеть для извлечения признаков изображения, затем преобразует количество каналов в количество категорий через сверточный слой 1 × 1 и, наконец, преобразует высоту и ширину карты признаков до размера входное изображение с использованием транспонированного сверточного слоя для вывода категории каждого пикселя.
· В полностью сверточной сети мы инициализируем транспонированный сверточный слой для билинейной интерполяции с повышающим разрешением.

Упражнения
· Если мы используем Xavier для случайной инициализации транспонированного сверточного слоя, что произойдет с результатом?
· Можете ли вы еще больше повысить точность модели, настроив гиперпараметры?
· Предскажите категории всех пикселей в тестовом изображении.
· Выходы некоторых промежуточных слоев сверточной нейронной сети также используются в статье о полностью сверточных сетях [1]. Попробуй реализовать эту идею.
Обсуждения201
13.12. Перенос нейронного стиля
Если вы пользуетесь приложениями для обмена в соцсетях или являетесь фотографом-любителем, вы знакомы с фильтрами. Фильтры могут изменять цветовые стили фотографий, чтобы сделать фон более резким или лица людей более белыми. Однако фильтр обычно может изменить только один аспект фотографии. Чтобы создать идеальную фотографию, вам часто нужно пробовать множество различных комбинаций фильтров. Этот процесс так же сложен, как настройка гиперпараметров модели.
В этом разделе мы обсудим, как мы можем использовать сверточные нейронные сети (CNN) для автоматического применения стиля одного изображения к другому изображению, операция, известная как передача стиля (Gatys et al., 2016). Здесь нам нужны два входных изображения, одно изображение содержимого и одно изображение стиля. Мы используем нейронную сеть, чтобы изменить изображение контента так, чтобы его стиль отражал стиль изображения стиля. На рис. 13.12.1, изображение представляет собой пейзажную фотографию, сделанную автором в национальной части горы Рейнир недалеко от Сиэтла. Стильное изображение - картина маслом дубов осенью. Выходное составное изображение сохраняет общие формы объектов в изображении содержимого, но применяет мазки масляной живописи к изображению стиля и делает общий цвет более ярким.

Рис. 13.12.1: Входные изображения содержимого и стиля и составное изображение, созданное с помощью передачи стиля.
13.12.1. Техника
Модель передачи стиля на основе CNN показана на рис. 13.12.2. Сначала мы инициализируем составное изображение. Например, мы можем инициализировать его как изображение содержимого. Это составное изображение - единственная переменная, которую необходимо обновить в процессе передачи стиля, т. Е. Параметр модели, который необходимо обновить при передаче стиля. Затем мы выбираем предварительно обученную CNN для извлечения функций изображения. Эти параметры модели не нужно обновлять во время обучения. Глубокая CNN использует несколько нейроннных слоев, которые успешно извлекают особенности изображения. Мы можем выбрать вывод определенных слоев для использования в качестве функций контента или стилей. Если использовать структуру на рис. 13.12.2, предварительно обученная нейронная сеть содержит три сверточных слоя. Второй уровень выводит характеристики содержимого изображения, а выходные данные первого и третьего уровней используются как функции стиля. Затем мы используем для распространения (в направлении сплошных линий), чтобы вычислить функцию потерь при передаче стиля, и распространение в обратном направлении (в направлении пунктирных линий), чтобы обновить параметр модели, постоянно обновляем составное изображение. Функции потери, используемые при передаче стилей, обычно состоят из трех частей:
1. Потеря контента используется для того, чтобы составное изображение приближалось к изображению контента в отношении характеристик контента.
2. Потеря стиля используется для того, чтобы составное изображение приближалось к стилевому изображению с точки зрения стилевых характеристик. 3. Полная потеря вариации помогает уменьшить шум в составном изображении. Наконец, после того, как мы закончим обучение модели, мы выводим модель передачи стиля параметров для получения окончательного составного изображения.
Рис. 13.12.2: Процесс передачи стиля на основе CNN. Сплошные линии показывают направление прямого распространения, а пунктирные линии - обратное.
Затем мы проведем эксперимент, чтобы лучше понять технические детали переноса стиля.
13.12.2. Чтение содержимого и изображений стиля
Сначала мы читаем контент и стили изображения. Распечатав оси координат изображения, мы видим, что они имеют разные размеры.
%matplotlib inline
from d2l import mxnet as d2l
from mxnet import autograd, gluon, image, init, np, npx
from mxnet.gluon import nn
npx.set_np()
d2l.set_figsize()
content_img = image.imread('../img/rainier.jpg')
d2l.plt.imshow(content_img.asnumpy());
style_img = image.imread('../img/autumn_oak.jpg')
d2l.plt.imshow(style_img.asnumpy());

13.12.3. Предварительная обработка и постобработка
Ниже мы определяем функции для предварительной и постобработки изображений. Функция предварительной обработки нормализует каждый из трех каналов RGB входных изображений и преобразует результаты в формат, который может быть введен в CNN. Функция постобработки восстанавливает значения пикселей в выходном изображении до их исходных значений перед нормализацией. Поскольку функция печати изображения требует, чтобы каждый пиксель имел значение с плавающей запятой от 0 до 1, мы используем функцию клипа для замены значений меньше 0 или больше 1 на 0 или 1 соответственно.
rgb_mean = np.array([0.485, 0.456, 0.406])
rgb_std = np.array([0.229, 0.224, 0.225])
def preprocess(img, image_shape):
img = image.imresize(img, *image_shape)
img = (img.astype('float32') / 255 - rgb_mean) / rgb_std
return np.expand_dims(img.transpose(2, 0, 1), axis=0)
def postprocess(img):
img = img[0].as_in_ctx(rgb_std.ctx)
return (img.transpose(1, 2, 0) * rgb_std + rgb_mean).clip(0, 1)

13.12.4. Извлечение функций
Мы используем модель VGG-19, предварительно обученную на наборе данных ImageNet, для извлечения функций изображения [1].
pretrained_net = gluon.model_zoo.vision.vgg19(pretrained=True)
Чтобы извлечь содержимое изображения и особенности стиля, мы можем выбрать выходы определенных слоев в сети VGG. В общем, чем ближе выход к входному слою, тем проще извлечь подробную информацию об изображении. Чем дальше находится вывод, тем легче извлекать глобальную информацию. Чтобы в составном изображении не сохранялось слишком много деталей из изображения содержимого, мы выбираем сетевой слой VGG рядом с выходным слоем для вывода функций содержимого изображения. Этот слой называется слоем содержимого. Мы также выбираем выходы разных слоев из сети VGG для сопоставления локальных и глобальных стилей. Они называются слоями стилей. Как мы упоминали в разделе 7.2, сети VGG имеют пять сверточных блоков. В этом эксперименте мы выбираем последний сверточный слой четвертого сверточного блока в качестве слоя содержимого и первый слой каждого блока в качестве слоев стиля. Мы можем получить индексы для этих слоев, распечатав экземпляр pretrained_net.
style_layers, content_layers = [0, 5, 10, 19, 28], [25]
Во время извлечения функций нам нужно использовать только все слои VGG от входного уровня до слоя содержимого или стиля, ближайшего к выходному слою. Ниже мы строим новую сеть net, которая сохраняет только те слои в сети VGG, которые нам нужны. Затем мы используем net для извлечения функций.
net = nn.Sequential()
for i in range(max(content_layers + style_layers) + 1):
net.add(pretrained_net.features[i])

Учитывая вход X, если мы просто вызовем сеть прямого вычисления (X), мы сможем получить только выход последнего слоя. Поскольку нам также нужны выходные данные промежуточных уровней, нам необходимо выполнять послойные вычисления и сохранять выходные данные уровня содержимого и стилей.
def extract_features(X, content_layers, style_layers):
contents = []
styles = []
for i in range(len(net)):
X = net[i](X)
if i in style_layers:
styles.append(X)
if i in content_layers:
contents.append(X)
return contents, styles

Затем мы определяем две функции: функция get_contents получает функции содержимого, извлеченные из изображения содержимого, а функция get_styles получает функции стиля, извлеченные из изображения стиля. Поскольку нам не нужно изменять параметры предварительно обученной модели VGG во время обучения, мы можем извлекать функции содержимого из изображения содержимого и функции стиля из изображения стиля до начала обучения. Поскольку составное изображение является параметром модели, который должен быть обновлен во время передачи стиля, мы можем вызвать только функцию extract_features во время обучения, чтобы извлечь содержимое и особенности стиля составного изображения.
def get_contents(image_shape, device):
content_X = preprocess(content_img, image_shape).copyto(device)
contents_Y, _ = extract_features(content_X, content_layers, style_layers)
return content_X, contents_Y
def get_styles(image_shape, device):
style_X = preprocess(style_img, image_shape).copyto(device)
_, styles_Y = extract_features(style_X, content_layers, style_layers)
return style_X, styles_Y

13.12.5. Определение функции потерь
Далее мы рассмотрим функцию потерь, используемую для передачи стиля. Функция потерь включает потерю контента, потерю стиля и полную потерю вариаций.
13.12.5.1. Потеря контента
Подобно функции потерь, используемой в линейной регрессии, потеря содержимого использует функцию квадратичной ошибки для измерения разницы в характеристиках содержимого между составным изображением и изображением содержимого.
Два входа функции квадратичной ошибки - это выходы уровня содержимого, полученные из функции ex tract_features.
def content_loss(Y_hat, Y):
return np.square(Y_hat - Y).mean()

13.12.5.2. Потеря стиля
При потере стиля, как и при потере содержимого, используется функция квадратичной ошибки для измерения разницы в стилях между составным изображением и изображением стиля. Чтобы выразить вывод стилей слоями стилей, мы сначала используем функцию extract_features для вычисления вывода слоя стилей. Предполагая, что на выходе имеется 1 пример, c каналов и высота и ширина h и w, мы можем преобразовать вывод в матрицу X, которая имеет c строк и h · w столбцов. Вы можете думать о matrixX как о комбинации c векторов x1 ,. . . , xc, которые имеют длину hw. Здесь вектор xi представляет стилевую особенность канала i. В матрице Грама этих векторов XX⊤ ∈ Rc × c элемент xij в строке i столбца j - скалярное произведение векторов xi и xj. Он представляет собой соотношение стилевых особенностей каналов i и j. Мы используем этот тип матрицы Грама для представления вывода стиля слоями стиля.
Вы должны отметить, что, когда значение h · w велико, это часто приводит к большим значениям в матрице Грамма.
Кроме того, высота и ширина матрицы Грамма - это количество каналов c. Чтобы гарантировать, что размер этих значений не влияет на потерю стиля, мы определяем функцию грамма ниже, чтобы разделить матрицу Грамма на количество ее элементов, то есть c · h · w.
def gram(X):
num_channels, n = X.shape[1], X.size // X.shape[1]
X = X.reshape(num_channels, n)
return np.dot(X, X.T) / (num_channels * n)

Естественно, два входа матрицы Грамма функции квадратичной ошибки для потери стиля берутся из выходных данных составного изображения и слоя стиля изображения стиля. Здесь мы предполагаем, что матрица Грамма изображения стиля, gram_Y, была вычислена заранее.
def style_loss(Y_hat, gram_Y):
return np.square(gram(Y_hat) - gram_Y).mean()

13.12.5.3. Полная потеря дисперсии
Иногда составные изображения, которые мы изучаем, содержат много высокочастотного шума, особенно ярких или темных пикселей. Одним из распространенных методов шумоподавления является шумоподавление с полным отклонением. Мы предполагаем, что xi,j представляет значение пикселя в координате (i, j), поэтому общая потеря дисперсии составляет:
∑i,j | xi,j - xi+1, j | + | xi,j - xi, j+1 | . (13.12.1)
Мы стараемся сделать значения соседних пикселей максимально похожими.
def tv_loss (Y_hat):
return 0.5 * (np.abs (Y_hat [:,:, 1:,:] - Y_hat [:,:,: -1 ,:]). mean () +
np.abs (Y_hat [:,:,:, 1:] - Y_hat [:,:,:,: -1]). mean ())

13.12.5.4. Функция потерь
Функция потерь для переноса стиля - это взвешенная сумма потери контента, потери стиля и общей потери дисперсии. Регулируя эти гиперпараметры веса, мы можем сбалансировать сохраняемое содержимое, переданный стиль и уменьшение шума в составном изображении в соответствии с их относительной важностью.
content_weight, style_weight, tv_weight = 1, 1e3, 10
def compute_loss(X, contents_Y_hat, styles_Y_hat, contents_Y, styles_Y_gram):
Calculate the content, style, and total variance losses respectively
contents_l = [content_loss(Y_hat, Y) * content_weight for Y_hat, Y in zip(
contents_Y_hat, contents_Y)]
styles_l = [style_loss(Y_hat, Y) * style_weight for Y_hat, Y in zip(
styles_Y_hat, styles_Y_gram)]
tv_l = tv_loss(X) * tv_weight
Add up all the losses
l = sum(styles_l + contents_l + [tv_l])
return contents_l, styles_l, tv_l, l

13.12.6. Создание и инициализация составного образа
При передаче стиля составное изображение - единственная переменная, которую необходимо обновить. Следовательно, мы можем определить простую модель GeneratedImage и рассматривать составное изображение как параметр модели.
В модели прямое вычисление возвращает только параметр модели.
class GeneratedImage(nn.Block):
def __init__(self, img_shape, **kwargs):
super(GeneratedImage, self).__init__(**kwargs)
self.weight = self.params.get('weight', shape=img_shape)
def forward(self):
return self.weight.data()

Затем мы определяем функцию get_inits. Эта функция создает экземпляр модели составного изображения и инициализирует его изображением X. Матрица Грамма для различных слоев стиля изображения стиля,
styles_Y_gram, is computed prior to training.
def get_inits(X, device, lr, styles_Y):
gen_img = GeneratedImage(X.shape)
gen_img.initialize(init.Constant(X), ctx=device, force_reinit=True)
trainer = gluon.Trainer(gen_img.collect_params(), 'adam',
{'learning_rate': lr})
styles_Y_gram = [gram(Y) for Y in styles_Y]
return gen_img(), styles_Y_gram, trainer

13.12.7. Обучение
Во время обучения модели мы постоянно извлекаем содержание и особенности стиля составного изображения и вычисляем функцию потерь. Вспомните наше обсуждение в Разделе 12.2 того, как функции синхронизации заставляют переднюю часть ожидать результатов вычислений. Поскольку мы вызываем скалярную функцию синхронизации только каждые 50 эпох, процесс может занимать много памяти. Поэтому мы вызываем функцию синхронизации ожидания в каждую эпоху.
def train(X, contents_Y, styles_Y, device, lr, num_epochs, lr_decay_epoch):
X, styles_Y_gram, trainer = get_inits(X, device, lr, styles_Y)
animator = d2l.Animator(xlabel='epoch', ylabel='loss',
xlim=[1, num_epochs],
legend=['content', 'style', 'TV'],
ncols=2, figsize=(7, 2.5))
for epoch in range(1, num_epochs+1):
with autograd.record():
contents_Y_hat, styles_Y_hat = extract_features(
X, content_layers, style_layers)
contents_l, styles_l, tv_l, l = compute_loss(
X, contents_Y_hat, styles_Y_hat, contents_Y, styles_Y_gram)
l.backward()
trainer.step(1)
npx.waitall()
if epoch % lr_decay_epoch == 0:
trainer.set_learning_rate(trainer.learning_rate * 0.1)
if epoch % 10 == 0:
animator.axes[1].imshow(postprocess(X).asnumpy())
animator.add(epoch, [float(sum(contents_l)),
float(sum(styles_l)),
float(tv_l)])
return X

Далее приступаем к обучению модели. Во-первых, мы устанавливаем высоту и ширину содержимого и стили изображения равными 150 на 225 пикселей. Мы используем изображение содержимого для инициализации составного изображения.
device, image_shape = d2l.try_gpu(), (225, 150)
net.collect_params().reset_ctx(device)
content_X, contents_Y = get_contents(image_shape, device)
_, styles_Y = get_styles(image_shape, device)
output = train(content_X, contents_Y, styles_Y, device, 0.01, 500, 200)

Как видите, в составном изображении сохраняются декорации и объекты изображения содержимого, но при этом сохраняется цвет изображения стиля. Поскольку изображение относительно небольшое, детали немного нечеткие.
Чтобы получить более четкое составное изображение, мы обучаем модель, используя изображение большего размера: 900 × 600. Мы увеличили высоту и ширину использованного ранее изображения в четыре раза и инициализировали составное изображение большего размера.
image_shape = (900, 600)
_, content_Y = get_contents(image_shape, device)
_, style_Y = get_styles(image_shape, device)
X = preprocess(postprocess(output) * 255, image_shape)
output = train(X, content_Y, style_Y, device, 0.01, 300, 100)
d2l.plt.imsave('../img/neural-style.jpg', postprocess(output).asnumpy())

Как видите, каждая эпоха занимает больше времени из-за большего размера изображения. Как показано на рис. 13.12.3, полученное составное изображение сохраняет больше деталей из-за своего большего размера. Составное изображение не только имеет большие цветные блоки, такие как изображение стиля, но эти блоки даже имеют тонкую текстуру мазков кисти.

Резюме
· Функции потерь, используемые при передаче стилей, обычно состоят из трех частей:
1. Потеря содержимого используется для того, чтобы составное изображение приближалось к изображению содержимого в отношении характеристик содержимого.
2. Потеря стиля используется для того, чтобы составное изображение приближалось к изображению стиля с точки зрения свойств стиля.
3. Полная потеря вариации помогает уменьшить шум в составном изображении.
2. Мы можем использовать предварительно обученную CNN для извлечения функций изображения и минимизации функции потерь для постоянного обновления составного изображения.
3. Мы используем матрицу Грамма для представления стиля, выводимого слоями стиля.
Упражнения
1. Как результат меняется при выборе различных слоев содержимого и стилей?
2. Настройте гиперпараметры веса в функции потерь. Сохраняется ли на выходе больше контента или меньше шума?
3. Используйте различное содержание и стиль изображений. Можете ли вы создать более интересные составные изображения?
Обсуждения
13.13. Классификация изображений (CIFAR-10) на Kaggle
До сих пор мы использовали пакет данных Gluon для прямого получения наборов данных изображений в тензорном формате. Однако на практике наборы данных изображений часто существуют в формате файлов изображений. В этой секции, мы начнем с исходных файлов изображений и шаг за шагом систематизируем, прочитаем и преобразуем файлы в тензорный формат.
Мы провели эксперимент с набором данных CIFAR-10 в Разделе 13.1. Это важный набор данных в области компьютерного зрения. Теперь мы применим знания, полученные в предыдущих разделах, для участия в конкурсе Kaggle, который решает проблемы классификации изображений CIFAR-10. Веб-адрес конкурса:
https://www.kaggle.com/c/cifar-10

Рис. 13.13.1 показывает информацию на веб-странице конкурса. Чтобы представить результаты, сначала зарегистрируйте аккаунт на сайте Kaggle.
Рис. 13.13.1: Информация о веб-странице конкурса по классификации изображений CIFAR-10. Доступ к набору данных для конкурса можно получить, щелкнув вкладку «Данные».
Сначала импортируйте пакеты или модули, необходимые для соревнования.
import collections
from d2l import mxnet as d2l
import math
from mxnet import autograd, gluon, init, npx
from mxnet.gluon import nn
import os
import pandas as pd
import shutil
import time
npx.set_np()

13.13.1. Получение и организация набора данных
Данные соревнований разделены на обучающую выборку и тестовую выборку. Обучающий набор содержит 50 000 изображений. Набор для тестирования содержит 300 000 изображений, из которых 10 000 изображений используются для оценки, в то время как другие 290 000 изображений без оценки включены для предотвращения ручного нанесения меток на набор для тестирования и представления результатов маркировки. Форматы изображений в обоих наборах данных - PNG, с высотой и шириной 32 пикселя и тремя цветовыми каналами (RGB). Изображения охватывают 10 категорий: самолеты, автомобили, птицы, кошки, олени, собаки, лягушки, лошади, лодки и грузовики. В верхнем левом углу рисунка 9.16 показаны некоторые изображения самолетов, автомобилей и птиц в наборе данных.
13.13.1.1. Скачивание набора данных
После входа в Kaggle мы можем щелкнуть вкладку «Данные» на веб-странице конкурса классификации изображений CIFAR-10, показанном на рис. 13.13.1 и загрузите набор данных, нажав кнопку «Загрузить.
Все ». После распаковки загруженного файла в ../data и разархивирования внутри него train.7z и test.7z, вы найдете весь набор данных по следующим путям:
· ../data/cifar-10/train/🏻1-50000🏻.png
· ../data/cifar-10/test/ [1-300000] .png
· ../data/cifar-10/trainLabels.csv
· ../data/cifar-10/sampleSubmission.csv
Здесь папки train и test содержат обучающие и тестовые изображения соответственно, trainLabels.csv содержит метки для обучающих изображений, а sample_submission.csv - это образец отправки.
Чтобы упростить начало работы, мы предоставляем небольшую выборку набора данных: он содержит первые 1000 обучающих изображений и 5 случайных тестовых изображений. Чтобы использовать полный набор данных конкурса Kaggle, вам необходимо установить для следующей демонстрационной переменной значение False.
#@save
d2l.DATA_HUB['cifar10_tiny'] = (d2l.DATA_URL + 'kaggle_cifar10_tiny.zip',
'2068874e4b9a9f0fb07ebe0ad2b29754449ccacd')
If you use the full dataset downloaded for the Kaggle competition, set
`demo` to False
demo = True
if demo:
data_dir = d2l.download_extract('cifar10_tiny')
else:
data_dir = '../data/cifar-10/'
Downloading ../data/kaggle_cifar10_tiny.zip from http://d2l-data.s3-accelerate.amazonaws.com/
,→kaggle_cifar10_tiny.zip...

13.13.1.2. Организация набора данных
Нам необходимо организовать наборы данных, чтобы облегчить обучение и тестирование моделей. Давайте сначала прочитаем метки из файла csv. Следующая функция возвращает словарь, который сопоставляет имя файла без расширения его метке.
#@save
def read_csv_labels(fname):
"""Read fname to return a name to label dictionary."""
with open(fname, 'r') as f:
Skip the file header line (column name)
lines = f.readlines()[1:]
tokens = [l.rstrip().split(',') for l in lines]
return dict(((name, label) for name, label in tokens))
labels = read_csv_labels(os.path.join(data_dir, 'trainLabels.csv'))
print('# training examples:', len(labels))
print('# classes:', len(set(labels.values())))
training examples: 1000
classes: 10

Затем мы определяем функцию reorg_train_valid, чтобы сегментировать набор проверки из исходного набора обучения. Аргумент valid_ratio в этой функции - это отношение количества примеров в проверочном наборе к количеству примеров в исходном обучающем наборе. В частности, пусть n будет количеством изображений класса с наименьшим количеством примеров, а r будет отношением, тогда мы будем использовать max (⌊nr⌋, 1) изображений для каждого класса в качестве набора проверки. Давайте возьмем в качестве примера valid_ratio = 0.1. Поскольку исходный обучающий набор содержит 50 000 изображений, будет 45 000 изображений, используемых для обучения и сохраненных в пути "train_valid_test / train" при настройке гиперпараметров, в то время как другие 5000 изображений будут сохранены как набор для проверки в путь «train_valid_test / valid». После организации данных изображения одного класса будут помещены в ту же папку, чтобы мы могли прочитать их позже.
#@save
def copyfile(filename, target_dir):
"""Copy a file into a target directory."""
d2l.mkdir_if_not_exist(target_dir)
shutil.copy(filename, target_dir)
#@save
def reorg_train_valid(data_dir, labels, valid_ratio):
The number of examples of the class with the least examples in the
training dataset
n = collections.Counter(labels.values()).most_common()[-1][1]
The number of examples per class for the validation set
n_valid_per_label = max(1, math.floor(n * valid_ratio))
label_count = {}
for train_file in os.listdir(os.path.join(data_dir, 'train')):
label = labels[train_file.split('.')[0]]
fname = os.path.join(data_dir, 'train', train_file)
Copy to train_valid_test/train_valid with a subfolder per class
copyfile(fname, os.path.join(data_dir, 'train_valid_test',
'train_valid', label))
if label not in label_count or label_count[label] < n_valid_per_label:
Copy to train_valid_test/valid
copyfile(fname, os.path.join(data_dir, 'train_valid_test',
'valid', label))
label_count[label] = label_count.get(label, 0) + 1
else:
Copy to train_valid_test/train
copyfile(fname, os.path.join(data_dir, 'train_valid_test',
'train', label))
return n_valid_per_label

После организации данных изображения одного класса будут помещены в ту же папку, чтобы мы могли прочитать их позже.
#@save
def copyfile(filename, target_dir):
"""Copy a file into a target directory."""
d2l.mkdir_if_not_exist(target_dir)
shutil.copy(filename, target_dir)
#@save
def reorg_train_valid(data_dir, labels, valid_ratio):
The number of examples of the class with the least examples in the
training dataset
n = collections.Counter(labels.values()).most_common()[-1][1]
The number of examples per class for the validation set
n_valid_per_label = max(1, math.floor(n * valid_ratio))
label_count = {}
for train_file in os.listdir(os.path.join(data_dir, 'train')):
label = labels[train_file.split('.')[0]]
fname = os.path.join(data_dir, 'train', train_file)
Copy to train_valid_test/train_valid with a subfolder per class
copyfile(fname, os.path.join(data_dir, 'train_valid_test',
'train_valid', label))
if label not in label_count or label_count[label] < n_valid_per_label:
Copy to train_valid_test/valid
copyfile(fname, os.path.join(data_dir, 'train_valid_test',
'valid', label))
label_count[label] = label_count.get(label, 0) + 1
else:
Copy to train_valid_test/train
copyfile(fname, os.path.join(data_dir, 'train_valid_test',
'train', label))
return n_valid_per_label

Приведенная ниже функция reorg_test используется для организации набора тестов для облегчения чтения во время прогнозирования.
#@save
def reorg_test(data_dir):
for test_file in os.listdir(os.path.join(data_dir, 'test')):
copyfile(os.path.join(data_dir, 'test', test_file),
os.path.join(data_dir, 'train_valid_test', 'test',
'unknown'))

Наконец, мы используем функцию для вызова ранее определенных read_csv_labels, reorg_train_valid и
read_csv_labels, reorg_train_valid, and
reorg_test functions.
def reorg_cifar10_data(data_dir, valid_ratio):
labels = read_csv_labels(os.path.join(data_dir, 'trainLabels.csv'))
reorg_train_valid(data_dir, labels, valid_ratio)
reorg_test(data_dir)

Мы установили размер пакета только для демонстрационного набора данных равным 4. Во время фактического обучения и тестирования следует использовать полный набор данных конкурса Kaggle, а для параметра batch_size следует установить большее целое число, например, 128. Мы используем 10% обучающих примеров в качестве набора для проверки для настройки гиперпараметров.
batch_size = 4 if demo else 128
valid_ratio = 0.1
reorg_cifar10_data(data_dir, valid_ratio)

13.13.2. Увеличение изображения
Чтобы справиться с переобучением, мы используем увеличение изображения. Например, добавив трансформации RandomFlipLeftRight () изображения можно переворачивать в произвольном порядке. Мы также можем выполнить нормализацию для трех каналов RGB цветных изображений с помощью transforms.Normalize (). Ниже мы перечисляем некоторые из этих операций, которые вы можете использовать или изменять в зависимости от требований.
transform_train = gluon.data.vision.transforms.Compose([
Magnify the image to a square of 40 pixels in both height and width
gluon.data.vision.transforms.Resize(40),
Randomly crop a square image of 40 pixels in both height and width to
produce a small square of 0.64 to 1 times the area of the original
image, and then shrink it to a square of 32 pixels in both height and
width gluon.data.vision.transforms.RandomResizedCrop(32, scale=(0.64, 1.0), ratio=(1.0, 1.0)),
gluon.data.vision.transforms.RandomFlipLeftRight(),
gluon.data.vision.transforms.ToTensor(),
Normalize each channel of the image
gluon.data.vision.transforms.Normalize([0.4914, 0.4822, 0.4465],
[0.2023, 0.1994, 0.2010])])

Чтобы гарантировать достоверность вывода во время тестирования, мы выполняем только нормализацию изображения.
transform_test = gluon.data.vision.transforms.Compose([
gluon.data.vision.transforms.ToTensor(),
gluon.data.vision.transforms.Normalize([0.4914, 0.4822, 0.4465],
[0.2023, 0.1994, 0.2010])])

13.13.3. Чтение набора данных
Затем мы можем создать экземпляр ImageFolderDataset для чтения организованного набора данных, содержащего исходные файлы изображений, где каждый пример включает изображение и метку.
train_ds, valid_ds, train_valid_ds, test_ds = [
gluon.data.vision.ImageFolderDataset(
os.path.join(data_dir, 'train_valid_test', folder))
for folder in ['train', 'valid', 'train_valid', 'test']]

Мы указываем определенную операцию увеличения изображения в DataLoader. Во время обучения мы используем только набор проверки для оценки модели, поэтому нам необходимо обеспечить достоверность вывода. Во время прогнозирования мы обучим модель на комбинированном обучающем наборе и наборе проверки, чтобы в полной мере использовать все помеченные данные.
train_iter, train_valid_iter = [gluon.data.DataLoader(
dataset.transform_first(transform_train), batch_size, shuffle=True,
last_batch='discard') for dataset in (train_ds, train_valid_ds)]
valid_iter = gluon.data.DataLoader(
valid_ds.transform_first(transform_test), batch_size, shuffle=False,
last_batch='discard')
test_iter = gluon.data.DataLoader(
test_ds.transform_first(transform_test), batch_size, shuffle=False,
last_batch='keep')

13.13.4. Определение модели
Здесь мы строим остаточные блоки на основе класса HybridBlock, который немного отличается от реализации, описанной в Разделе 7.6. Это сделано для повышения эффективности выполнения.
class Residual(nn.HybridBlock):
def __init__(self, num_channels, use_1x1conv=False, strides=1, **kwargs):
super(Residual, self).__init__(**kwargs)
self.conv1 = nn.Conv2D(num_channels, kernel_size=3, padding=1,
strides=strides)
self.conv2 = nn.Conv2D(num_channels, kernel_size=3, padding=1)
if use_1x1conv:
self.conv3 = nn.Conv2D(num_channels, kernel_size=1,
strides=strides)
else:
self.conv3 = None
self.bn1 = nn.BatchNorm()
self.bn2 = nn.BatchNorm()
def hybrid_forward(self, F, X):
Y = F.npx.relu(self.bn1(self.conv1(X)))
Y = self.bn2(self.conv2(Y))
if self.conv3:
X = self.conv3(X)
return F.npx.relu(Y + X)

Далее мы определяем модель ResNet-18.
def resnet18(num_classes):
net = nn.HybridSequential()
net.add(nn.Conv2D(64, kernel_size=3, strides=1, padding=1),
nn.BatchNorm(), nn.Activation('relu'))
def resnet_block(num_channels, num_residuals, first_block=False):
blk = nn.HybridSequential()
for i in range(num_residuals):
if i == 0 and not first_block:
blk.add(Residual(num_channels, use_1x1conv=True, strides=2))
else:
blk.add(Residual(num_channels))
return blk
net.add(resnet_block(64, 2, first_block=True),
resnet_block(128, 2),
resnet_block(256, 2),
resnet_block(512, 2))
net.add(nn.GlobalAvgPool2D(), nn.Dense(num_classes))
return net

Задача классификации изображений CIFAR-10 использует 10 категорий. Мы выполним случайную инициализацию модели Xavier перед началом обучения.
def get_net(devices):
num_classes = 10
net = resnet18(num_classes)
net.initialize(ctx=devices, init=init.Xavier())
return net
loss = gluon.loss.SoftmaxCrossEntropyLoss()

13.13.5. Определение функций обучения
Мы выберем модель и настроим гиперпараметры в соответствии с характеристиками модели на проверочном наборе. Затем мы определяем обучающую функцию модели train. Мы записываем время обучения каждой эпохи, что помогает нам сравнивать временные затраты различных моделей.
def train(net, train_iter, valid_iter, num_epochs, lr, wd, devices, lr_period,
lr_decay):
trainer = gluon.Trainer(net.collect_params(), 'sgd',
{'learning_rate': lr, 'momentum': 0.9, 'wd': wd})
num_batches, timer = len(train_iter), d2l.Timer()
animator = d2l.Animator(xlabel='epoch', xlim=[0, num_epochs],
legend=['train loss', 'train acc', 'valid acc'])
for epoch in range(num_epochs):
metric = d2l.Accumulator(3)
if epoch > 0 and epoch % lr_period == 0:
trainer.set_learning_rate(trainer.learning_rate * lr_decay)
for i, (features, labels) in enumerate(train_iter):
timer.start()
l, acc = d2l.train_batch_ch13(
net, features, labels.astype('float32'), loss, trainer,
devices, d2l.split_batch)
metric.add(l, acc, labels.shape[0])
timer.stop()
if (i + 1) % (num_batches // 5) == 0:
animator.add(epoch + i / num_batches,
(metric[0] / metric[2], metric[1] / metric[2],
None))
if valid_iter is not None:
valid_acc = d2l.evaluate_accuracy_gpus(net, valid_iter, d2l.split_batch)
animator.add(epoch + 1, (None, None, valid_acc))
if valid_iter is not None:
print(f'loss {metric[0] / metric[2] :.3f}, '
f'train acc {metric[1] / metric[2]:.3f}, '
f'valid acc {valid_acc:.3f}')
else:
print(f'loss {metric[0] / metric[2]:.3f}, '
f'train acc {metric[1] / metric[2]:.3f}')
print(f'{metric[2] * num_epochs / timer.sum():.1f} examples/sec '
f'on {str(devices)}')

13.13.6. Обучение и проверка модели
Теперь мы можем обучить и проверить модель. Следующие гиперпараметры можно настроить. Например, мы можем увеличить количество эпох. Поскольку lr_period и lr_decay установлены на 80 и 0,1 соответственно, скорость обучения алгоритма оптимизации будет умножаться на 0,1 после каждых 80 эпох. Для простоты мы тренируем здесь только одну эпоху.
devices, num_epochs, lr, wd = d2l.try_all_gpus(), 5, 0.1, 5e-4
lr_period, lr_decay, net = 50, 0.1, get_net(devices)
net.hybridize()
train(net, train_iter, valid_iter, num_epochs, lr, wd, devices, lr_period,
lr_decay)
loss 2.334, train acc 0.125, valid acc 0.150
94.3 examples/sec on [gpu(0), gpu(1)]

13.13.7. Классификация набора тестов и отправка результатов на Kaggle
После получения удовлетворительного дизайна модели и гиперпараметров мы используем все обучающие наборы данных (включая наборы проверки) для повторного обучения модели и классификации набора для тестирования.
net, preds = get_net(devices), []
net.hybridize()
train(net, train_valid_iter, None, num_epochs, lr, wd, devices, lr_period,
lr_decay)
for X, _ in test_iter:
y_hat = net(X.as_in_ctx(devices[0]))
preds.extend(y_hat.argmax(axis=1).astype(int).asnumpy())
sorted_ids = list(range(1, len(test_ds) + 1))
sorted_ids.sort(key=lambda x: str(x))
df = pd.DataFrame({'id': sorted_ids, 'label': preds})
df['label'] = df['label'].apply(lambda x: train_valid_ds.synsets[x])
df.to_csv('submission.csv', index=False)
loss 2.345, train acc 0.114
97.3 examples/sec on [gpu(0), gpu(1)]

После выполнения вышеуказанного кода мы получим файл «submission.csv». Формат этого файла соответствует требованиям конкурса Kaggle. Метод отправки результатов аналогичен методу в Разделе 4.10.

Резюме
· Мы можем создать экземпляр ImageFolderDataset для чтения набора данных, содержащего исходные файлы изображений.
· Мы можем использовать сверточные нейронные сети, увеличение изображений и гибридное программирование, чтобы принять участие в соревновании по классификации изображений.
Упражнения
1. Используйте полный набор данных CIFAR-10 для конкурса Kaggle. Измените batch_size и количество эпох num_epochs на 128 и 100 соответственно. Посмотрите, какой точности и рейтинга вы можете достичь в этом соревновании.
2. Какой точности вы можете достичь, если не используете увеличение изображения?
3. Отсканируйте QR-код, чтобы получить доступ к соответствующим обсуждениям и обменяться идеями об используемых методах и полученных результатах с сообществом. Вы можете придумать что-нибудь лучше предлагаемой техники?
Обсуждения203

203 https://discuss.d2l.ai/t/379

13.14. Определение породы собак (собаки ImageNet) на Kaggle
В этом разделе мы рассмотрим задачу определения породы собак на соревнованиях Kaggle Competition.
Веб-адрес конкурса:
https://www.kaggle.com/c/dog-breed-identification
В этом конкурсе мы пытаемся определить 120 различных пород собак. Набор данных, используемый в этом соревновании, на самом деле является подмножеством известного набора данных ImageNet. В отличие от изображений в наборе данных CIFAR-10, использованных в предыдущем разделе, изображения в наборе данных ImageNet выше и шире, а их размеры несовместимы.
Рис. 13.14.1 показывает информацию на веб-странице конкурса. Чтобы представить результаты, сначала зарегистрируйте аккаунт на сайте Kaggle.

Рис. 13.14.1: Сайт конкурса по определению породы собак. Доступ к набору данных для конкурса можно получить, щелкнув вкладку «Данные».
Сначала импортируйте пакеты или модули, необходимые для соревнования.
import collections
from d2l import mxnet as d2l
import math
from mxnet import autograd, gluon, init, npx
from mxnet.gluon import nn
import os
import time
npx.set_np()

13.14.1. Получение и организация набора данных
Данные соревнований разделены на обучающую выборку и тестовую выборку. Обучающий набор содержит 10 222 изображения, а тестовый набор содержит 10 357 изображений. Изображения в обоих наборах имеют формат JPEG.
Эти изображения содержат три канала RGB (цвет), и они имеют разную высоту и ширину.
В тренировочном наборе 120 пород собак, в том числе лабрадоры, пудели, таксы, самоеды, хаски, чихуахуа и йоркширские терьеры.
13.14.1.1. Скачивание набора данных
После входа в Kaggle мы можем щелкнуть вкладку «Данные» на веб-странице конкурса по определению породы собак, показанном на рис. 13.14.1 и загрузите набор данных, нажав «Загрузить все».
кнопка. После распаковки загруженного файла в ../data вы найдете весь набор данных по следующим путям:
· ../data/dog-breed-identification/labels.csv
· ../data/dog-breed-identification/sample_submission.csv
· ../data/dog-breed-identification/train
· ../data/dog-breed-identification/test
Вы могли заметить, что приведенная выше структура очень похожа на структуру конкурса CIFAR-10 в Разделе 13.13, где папки train / и test / содержат изображения собак для обучения и тестирования соответственно, а в файле labels.csv есть метки для обучающих изображений.
Точно так же, чтобы упростить начало работы, мы предоставляем небольшую выборку упомянутого выше набора данных «train_valid_test_tiny.zip». Если вы собираетесь использовать полный набор данных для соревнования Kaggle, вам также потребуется изменить демонстрационную переменную ниже на False.
#@save
d2l.DATA_HUB['dog_tiny'] = (d2l.DATA_URL + 'kaggle_dog_tiny.zip',
'0cb91d09b814ecdc07b50f31f8dcad3e81d6a86d')
If you use the full dataset downloaded for the Kaggle competition, change
the variable below to False
demo = True
if demo:
data_dir = d2l.download_extract('dog_tiny')
else:
data_dir = os.path.join('..', 'data', 'dog-breed-identification')
Downloading ../data/kaggle_dog_tiny.zip from http://d2l-data.s3-accelerate.amazonaws.com/
,→kaggle_dog_tiny.zip..

13.14.1.2. Организация набора данных
Мы можем организовать набор данных аналогично тому, что мы сделали в Разделе 13.13, а именно отделить набор проверки от обучающего набора и переместить изображения в подпапки, сгруппированные по меткам.
Приведенная ниже функция reorg_dog_data используется для чтения меток обучающих данных, сегментации проверочного набора и организации обучающего набора.
def reorg_dog_data(data_dir, valid_ratio):
labels = d2l.read_csv_labels(os.path.join(data_dir, 'labels.csv'))
d2l.reorg_train_valid(data_dir, labels, valid_ratio)
d2l.reorg_test(data_dir)
batch_size = 4 if demo else 128
valid_ratio = 0.1
reorg_dog_data(data_dir, valid_ratio)

13.14.2. Увеличение изображения
Размер изображений в этом разделе больше, чем у изображений в предыдущем разделе. Вот еще несколько операций по увеличению изображений, которые могут быть полезны.
transform_train = gluon.data.vision.transforms.Compose([
Randomly crop the image to obtain an image with an area of 0.08 to 1 of
the original area and height to width ratio between 3/4 and 4/3. Then,
scale the image to create a new image with a height and width of 224
pixels each
gluon.data.vision.transforms.RandomResizedCrop(224, scale=(0.08, 1.0),
ratio=(3.0/4.0, 4.0/3.0)),
gluon.data.vision.transforms.RandomFlipLeftRight(),
Randomly change the brightness, contrast, and saturation
gluon.data.vision.transforms.RandomColorJitter(brightness=0.4,
contrast=0.4,
saturation=0.4),
Add random noise
gluon.data.vision.transforms.RandomLighting(0.1),
gluon.data.vision.transforms.ToTensor(),
Standardize each channel of the image
gluon.data.vision.transforms.Normalize([0.485, 0.456, 0.406],
[0.229, 0.224, 0.225])])

Во время тестирования мы используем только определенные операции предварительной обработки изображений.
transform_test = gluon.data.vision.transforms.Compose([
gluon.data.vision.transforms.Resize(256),
Crop a square of 224 by 224 from the center of the image
gluon.data.vision.transforms.CenterCrop(224),
gluon.data.vision.transforms.ToTensor(),
gluon.data.vision.transforms.Normalize([0.485, 0.456, 0.406],
[0.229, 0.224, 0.225])])

13.14.3. Чтение набора данных
Как и в предыдущем разделе, мы можем создать экземпляр ImageFolderDataset для чтения набора данных с сохранением исходных файлов изображений.
train_ds, valid_ds, train_valid_ds, test_ds = [
gluon.data.vision.ImageFolderDataset(
os.path.join(data_dir, 'train_valid_test', folder))
for folder in ('train', 'valid', 'train_valid', 'test')]
Here, we create DataLoader instances, just like in Section 13.13.
train_iter, train_valid_iter = [gluon.data.DataLoader(
dataset.transform_first(transform_train), batch_size, shuffle=True,
last_batch='discard') for dataset in (train_ds, train_valid_ds)]
valid_iter = gluon.data.DataLoader(
valid_ds.transform_first(transform_test), batch_size, shuffle=False,
last_batch='discard')
test_iter = gluon.data.DataLoader(
test_ds.transform_first(transform_test), batch_size, shuffle=False,
last_batch='keep')

13.14.4. Определение модели
Набор данных для этого конкурса является подмножеством набора данных ImageNet. Следовательно, мы можем использовать подход, описанный в Разделе 13.2, чтобы выбрать предварительно обученную модель для всего набора данных ImageNet и использовать ее для извлечения функций изображения для ввода в настраиваемую мелкомасштабную сеть вывода. Gluon предоставляет широкий спектр предварительно обученных моделей. Здесь мы будем использовать предварительно обученную модель ResNet-34.
Поскольку набор данных о соревнованиях является подмножеством набора данных для предварительного обучения, мы просто повторно используем входные данные выходного слоя предварительно обученной модели, то есть извлеченные объекты. Затем мы можем заменить исходный выходной слой небольшой настраиваемой выходной сетью, которую можно обучить, например, два полностью связанных слоя в серии. В отличие от эксперимента в Разделе 13.2, здесь мы не обучаем предварительно обученную модель, используемую для извлечения признаков. Это сокращает время обучения и объем памяти, необходимые для хранения градиентов параметров модели.
Вы должны отметить, что во время увеличения изображения мы используем средние значения и стандартные отклонения трех каналов RGB для всего набора данных ImageNet для нормализации. Это соответствует нормализации предварительно обученной модели.
def get_net(devices):
finetune_net = gluon.model_zoo.vision.resnet34_v2(pretrained=True)
Define a new output network
finetune_net.output_new = nn.HybridSequential(prefix='')
finetune_net.output_new.add(nn.Dense(256, activation='relu'))
There are 120 output categories
finetune_net.output_new.add(nn.Dense(120))
Initialize the output network
finetune_net.output_new.initialize(init.Xavier(), ctx=devices)
Distribute the model parameters to the CPUs or GPUs used for computation
finetune_net.collect_params().reset_ctx(devices)
return finetune_net

При вычислении потерь мы сначала используем характеристики переменных-членов, чтобы получить входные данные выходного слоя предварительно обученной модели, то есть извлеченный элемент. Затем мы используем эту функцию в качестве входных данных для нашей небольшой настраиваемой выходной сети и вычисляем выходные данные.
loss = gluon.loss.SoftmaxCrossEntropyLoss()
def evaluate_loss(data_iter, net, devices):
l_sum, n = 0.0, 0
for features, labels in data_iter:
X_shards, y_shards = d2l.split_batch(features, labels, devices)
output_features = [net.features(X_shard) for X_shard in X_shards]
outputs = [net.output_new(feature) for feature in output_features]
ls = [loss(output, y_shard).sum() for output, y_shard
in zip(outputs, y_shards)]
l_sum += sum([float(l.sum()) for l in ls])
n += labels.size
return l_sum / n

13.14.5. Определение функций обучения
Мы выберем модель и настроим гиперпараметры в соответствии с характеристиками модели на проверочном наборе. Функция обучения модели обучает только небольшую настраиваемую выходную сеть.
def train(net, train_iter, valid_iter, num_epochs, lr, wd, devices, lr_period,
lr_decay):
Only train the small custom output network
trainer = gluon.Trainer(net.output_new.collect_params(), 'sgd',
{'learning_rate': lr, 'momentum': 0.9, 'wd': wd})
num_batches, timer = len(train_iter), d2l.Timer()
animator = d2l.Animator(xlabel='epoch', xlim=[0, num_epochs],
legend=['train loss', 'valid loss'])
for epoch in range(num_epochs):
metric = d2l.Accumulator(2)
if epoch > 0 and epoch % lr_period == 0:
trainer.set_learning_rate(trainer.learning_rate * lr_decay)
for i, (features, labels) in enumerate(train_iter):
timer.start()
X_shards, y_shards = d2l.split_batch(features, labels, devices)
output_features = [net.features(X_shard) for X_shard in X_shards]
with autograd.record():
outputs = [net.output_new(feature) for feature in output_features]
ls = [loss(output, y_shard).sum() for output, y_shard
in zip(outputs, y_shards)]
for l in ls:
l.backward()
trainer.step(batch_size)
metric.add(sum([float(l.sum()) for l in ls]), labels.shape[0])
timer.stop()
if (i + 1) % (num_batches // 5) == 0:
animator.add(epoch + i / num_batches,
(metric[0] / metric[1], None))
if valid_iter is not None:
valid_loss = evaluate_loss(valid_iter, net, devices)
animator.add(epoch + 1, (None, valid_loss))
if valid_iter is not None:
print(f'train loss {metric[0] / metric[1]:.3f}, '
f'valid loss {valid_loss:.3f}')
else:
print(f'train loss {metric[0] / metric[1]:.3f}')
print(f'{metric[1] * num_epochs / timer.sum():.1f} examples/sec '
f'on {str(devices)}')

13.14.6. Обучение и проверка модели
Теперь мы можем обучить и проверить модель. Следующие гиперпараметры можно настроить. Например, мы можем увеличить количество эпох. Поскольку lr_period и lr_decay установлены на 10 и 0,1 соответственно, скорость обучения алгоритма оптимизации будет умножаться на 0,1 после каждых 10 эпох.
devices, num_epochs, lr, wd = d2l.try_all_gpus(), 5, 0.01, 1e-4
lr_period, lr_decay, net = 10, 0.1, get_net(devices)
net.hybridize()
train(net, train_iter, valid_iter, num_epochs, lr, wd, devices, lr_period,
lr_decay)
train loss 2.080, valid loss 2.153
87.2 examples/sec on [gpu(0), gpu(1)]

13.14.7. Классификация набора тестов и отправка результатов на Kaggle
После получения удовлетворительного дизайна модели и гиперпараметров мы используем все обучающие наборы данных (включая наборы проверки) для повторного обучения модели, а затем классифицируем набор для тестирования. Обратите внимание, что прогнозы формируются выходной сетью, которую мы только что обучили.
et = get_net(devices)
net.hybridize()
train(net, train_valid_iter, None, num_epochs, lr, wd, devices, lr_period,
lr_decay)
preds = []
for data, label in test_iter:
output_features = net.features(data.as_in_ctx(devices[0]))
output = npx.softmax(net.output_new(output_features))
preds.extend(output.asnumpy())
ids = sorted(os.listdir(
os.path.join(data_dir, 'train_valid_test', 'test', 'unknown')))
with open('submission.csv', 'w') as f:
f.write('id,' + ','.join(train_valid_ds.synsets) + '\n')
for i, output in zip(ids, preds):
f.write(i.split('.')[0] + ',' + ','.join(
[str(num) for num in output]) + '\n')
train loss 2.495
89.8 examples/sec on [gpu(0), gpu(1)]

После выполнения вышеуказанного кода мы сгенерируем файл «submission.csv». Формат этого файла соответствует требованиям конкурса Kaggle. Метод представления результатов аналогичен методу в Разделе 4.10.
Резюме
· Мы можем использовать предварительно обученную модель в наборе данных ImageNet для извлечения функций и обучать только небольшую настраиваемую выходную сеть. Это позволит нам классифицировать подмножество набора данных ImageNet с меньшими затратами на вычисления и хранение.
Упражнения
1. При использовании всего набора данных Kaggle, какие результаты вы получите, если увеличите batch_size (размер пакета) и num_epochs (количество эпох)?
2. Получите ли вы лучшие результаты, если будете использовать более глубокую предварительно обученную модель?
3. Отсканируйте QR-код, чтобы получить доступ к соответствующим обсуждениям и обменяться идеями об используемых методах и полученных результатах с сообществом. Можете ли вы придумать какие-нибудь лучшие техники?

image6.emf

image7.emf

image8.emf

image9.emf

image10.emf

image11.emf

image12.emf

image13.emf

image14.emf

image15.emf

image16.emf

image17.emf

image18.emf

image19.emf

image20.emf

image21.emf

image22.emf

image23.emf

image24.emf

image25.emf

image26.emf

image27.emf

image28.emf

image29.emf

image30.emf

image31.emf

image32.emf

image33.emf

image34.emf

image35.emf

image36.emf

image37.emf

image38.emf

image39.emf

image40.emf

image41.emf

image42.emf

image43.emf

image44.emf

image45.emf

image1.emf

image46.emf

image47.emf

image48.emf

image49.emf

image50.emf

image51.emf

image52.emf

image2.emf

image3.emf

image4.emf

image5.emf

